A Quantitative Paradigm for Decision-Making in Precision Oncology

被引:7
|
作者
Engelhardt, Dalit [1 ,2 ,3 ,4 ]
Michor, Franziska [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Dana Farber Canc Inst, Dept Data Sci, Boston, MA 02115 USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[4] Dana Farber Canc Inst, Ctr Canc Evolut, Boston, MA 02115 USA
[5] Broad Inst Harvard & MIT, Cambridge, MA USA
[6] Ludwig Ctr Harvard, Boston, MA USA
来源
TRENDS IN CANCER | 2021年 / 7卷 / 04期
关键词
2-STAGE RANDOMIZATION DESIGNS; HIGH-RISK NEUROBLASTOMA; OLDER PATIENTS; SURVIVAL DISTRIBUTIONS; TREATMENT STRATEGIES; TREATMENT POLICIES; THERAPY; CANCER; TRIAL; CHEMOTHERAPY;
D O I
10.1016/j.trecan.2021.01.006
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The complexity and variability of cancer progression necessitate a quantitative paradigm for therapeutic decision-making that is dynamic, personalized, and capable of identifying optimal treatment strategies for individual patients under substantial uncertainty. Here, we discuss the core components and challenges of such an approach and highlight the need for comprehensive longitudinal clinical and molecular data integration in its development. We describe the complementary and varied roles of mathematical modeling and machine learning in constructing dynamic optimal cancer treatment strategies and highlight the potential of reinforcement learning approaches in this endeavor.
引用
下载
收藏
页码:293 / 300
页数:8
相关论文
共 50 条
  • [42] Probabilistic Blockchains: A Blockchain Paradigm for Collaborative Decision-Making
    Salman, Tara
    Jain, Raj
    Gupta, Lav
    2018 9TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2018, : 457 - 465
  • [43] Improving radiotherapy decision-making by the acute oncology team
    Kyle, M.
    Doak, M.
    CLINICAL ONCOLOGY, 2019, 31 : E4 - E5
  • [44] Geriatric assessment and treatment decision-making in surgical oncology
    Chesney, Tyler R.
    Daza, Julian F.
    Wong, Camilla L.
    CURRENT OPINION IN SUPPORTIVE AND PALLIATIVE CARE, 2023, 17 (01) : 22 - 30
  • [45] Artificial neural networks for decision-making in urologic oncology
    Anagnostou, T
    Remzi, M
    Lykourinas, M
    Djavan, D
    EUROPEAN UROLOGY, 2003, 43 (06) : 596 - 603
  • [46] Principles for ethical treatment decision-making in veterinary oncology
    Bley, C. Rohrer
    VETERINARY AND COMPARATIVE ONCOLOGY, 2018, 16 (02) : 171 - 177
  • [47] Partizipative Entscheidungsfindung in der OnkologieShared decision-making in oncology
    Anja Lindig
    Wiebke Frerichs
    Pola Hahlweg
    Isabelle Scholl
    best practice onkologie, 2023, 18 (9) : 366 - 372
  • [48] QUALITATIVE CRITERIA IN THERAPEUTIC EVALUATION AND DECISION-MAKING IN ONCOLOGY
    ASSELAIN, B
    GREMY, F
    BULLETIN DU CANCER, 1980, 67 (05) : 501 - 506
  • [49] Shared Decision-Making and Patient Control in Radiation Oncology
    Shabason, Jacob E.
    Mao, Jun J.
    Frankel, Eitan S.
    Vapiwala, Neha
    CANCER, 2014, 120 (12) : 1863 - 1870
  • [50] Influence of social and cultural patterns on decision-making in oncology
    Soum-Pouyalet, F.
    Regnier, V.
    Querre, M.
    Jacquin, J. -P.
    Hubert, A.
    Debled, M.
    BULLETIN DU CANCER, 2009, 96 (06) : 733 - 739