Model selection and parameter estimation using the iterative smoothing method

被引:5
|
作者
Koo, Hanwool [1 ,2 ]
Shafieloo, Arman [1 ,2 ]
Keeley, Ryan E. [1 ]
Huillier, Benjamin L. [3 ,4 ]
机构
[1] Korea Astron & Space Sci Inst, Daejeon 34055, South Korea
[2] Univ Sci & Technol, Korea Astron & Space Sci Inst Campus, Daejeon 34113, South Korea
[3] Yonsei Univ, Dept Astron, Seoul 03722, South Korea
[4] Sejong Univ, Dept Phys & Astron, Seoul 05006, South Korea
基金
新加坡国家研究基金会;
关键词
dark energy experiments; supernova type Ia - standard candles; dark energy theory; EXPANSION HISTORY; COSMIC ACCELERATION; COSMOLOGICAL CONSTRAINTS; IA SUPERNOVAE; UNIVERSE; ANISOTROPY; POINT;
D O I
10.1088/1475-7516/2021/03/034
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We compute the distribution of likelihoods from the non-parametric iterative smoothing method over a set of mock Pantheon-like type Ia supernova datasets. We use this likelihood distribution to test whether typical dark energy models are consistent with the data and to perform parameter estimation. In this approach, the consistency of a model and the data is determined without the need for comparison with another alternative model. Simulating future WFIRST-like data, we study type II errors and show how confidently we can distinguish different dark energy models using this non-parametric approach.
引用
收藏
页数:13
相关论文
共 50 条