A reliable data-based smoothing parameter selection method for circular kernel estimation

被引:2
|
作者
Ameijeiras-Alonso, Jose [1 ]
机构
[1] Univ Santiago De Compostela, Dept Stat, CITMAga, Math Anal & Optimizat, Rua Lope Gomez Marzoa S-N, Santiago De Compostela 15782, A Coruna, Spain
关键词
Circular data; Directional statistics; Kernel density estimation; Plug-in rule; Sheather and Jones bandwidth; BANDWIDTH SELECTION; DENSITY-ESTIMATION; R PACKAGE; REGRESSION;
D O I
10.1007/s11222-024-10384-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A new data-based smoothing parameter for circular kernel density (and its derivatives) estimation is proposed. Following the plug-in ideas, unknown quantities on an optimal smoothing parameter are replaced by suitable estimates. This paper provides a circular version of the well-known Sheather and Jones bandwidths (J R Stat Soc Ser B Stat Methodol 53(3):683-690, 1991. https://doi.org/10.1111/j.2517-6161.1991.tb01857.x), with direct and solve-the-equation plug-in rules. Theoretical support for our developments, related to the asymptotic mean squared error of the estimator of the density, its derivatives, and its functionals, for circular data, are provided. The proposed selectors are compared with previous data-based smoothing parameters for circular kernel density estimation. This paper also contributes to the study of the optimal kernel for circular data. An illustration of the proposed plug-in rules is also shown using real data on the time of car accidents.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A reliable data-based smoothing parameter selection method for circular kernel estimation
    Jose Ameijeiras-Alonso
    [J]. Statistics and Computing, 2024, 34
  • [2] A RELIABLE DATA-BASED BANDWIDTH SELECTION METHOD FOR KERNEL DENSITY-ESTIMATION
    SHEATHER, SJ
    JONES, MC
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1991, 53 (03): : 683 - 690
  • [3] Kernel contrasts: A data-based method of choosing smoothing parameters in nonparametric density estimation
    Ahmad, IA
    Ran, IS
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (05) : 671 - 707
  • [4] Progress in data-based bandwidth selection for Kernel density estimation
    Jones, MC
    Marron, JS
    Sheather, SJ
    [J]. COMPUTATIONAL STATISTICS, 1996, 11 (03) : 337 - 381
  • [5] ON OPTIMAL DATA-BASED BANDWIDTH SELECTION IN KERNEL DENSITY-ESTIMATION
    HALL, P
    SHEATHER, SJ
    JONES, MC
    MARRON, JS
    [J]. BIOMETRIKA, 1991, 78 (02) : 263 - 269
  • [6] OPTIMAL DATA-BASED KERNEL ESTIMATION OF EVOLUTIONARY SPECTRA
    RIEDEL, KS
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (07) : 2439 - 2447
  • [7] On the choice of the smoothing parameter in kernel density estimation
    Ushakov V.G.
    Ushakov N.G.
    [J]. Moscow University Computational Mathematics and Cybernetics, 2009, 33 (3) : 138 - 145
  • [8] Model selection and parameter estimation using the iterative smoothing method
    Koo, Hanwool
    Shafieloo, Arman
    Keeley, Ryan E.
    Huillier, Benjamin L.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (03):
  • [9] SMOOTHING PARAMETER SELECTION IN HAZARD ESTIMATION
    SARDA, P
    VIEU, P
    [J]. STATISTICS & PROBABILITY LETTERS, 1991, 11 (05) : 429 - 434
  • [10] An adaptive method for bandwidth selection in circular kernel density estimation
    Stanislav Zámečník
    Ivana Horová
    Stanislav Katina
    Kamila Hasilová
    [J]. Computational Statistics, 2024, 39 : 1709 - 1728