Could deep learning in neural networks improve the QSAR models?

被引:22
|
作者
Gini, G. [1 ]
Zanoli, F. [1 ]
Gamba, A. [2 ]
Raitano, G. [2 ]
Benfenati, E. [2 ]
机构
[1] Politecn Milan, DEIB, Milan, Italy
[2] Ist Ric Farmacol Mario Negri IRCCS, Lab Environm Chem & Toxicol, Milan, Italy
关键词
Classification; feature generation; deep neural networks; Ames test; mutagenicity; SMILES;
D O I
10.1080/1062936X.2019.1650827
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Assessing chemical toxicity is a multidisciplinary process, traditionally involving in vivo, in vitro and in silico tests. Currently, toxicological goal is to reduce new tests on chemicals, exploiting all information yet available. Recent advancements in machine learning and deep neural networks allow computers to automatically mine patterns and learn from data. This technology, applied to (Q)SAR model development, leads to discover by learning the structural-chemical-biological relationships and the emergent properties. Starting from Toxception, a deep neural network predicting activity from the chemical graph image, we designed SmilesNet, a recurrent neural network taking SMILES as the only input. We then integrated the two networks into C-Tox network to make the final classification. Results of our networks, trained on a similar to 20K molecule dataset with Ames test experimental values, match or even outperform the current state of the art. We also extract knowledge from the networks and compare it with the available mutagenic structural alerts. The advantage over traditional QSAR modelling is that our models automatically extract the features without using descriptors. Nevertheless, the model is successful if large numbers of examples are provided and computation is more complex than in classical methods.
引用
收藏
页码:617 / 642
页数:26
相关论文
共 50 条
  • [21] Deep learning in spiking neural networks
    Tavanaei, Amirhossein
    Ghodrati, Masoud
    Kheradpisheh, Saeed Reza
    Masquelier, Timothee
    Maida, Anthony
    NEURAL NETWORKS, 2019, 111 : 47 - 63
  • [22] Deep learning in neural networks: An overview
    Schmidhuber, Juergen
    NEURAL NETWORKS, 2015, 61 : 85 - 117
  • [23] Artificial neural networks and deep learning
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Burzykowski, Tomasz
    Valkenborg, Dirk
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2024, 165 (02) : 248 - 251
  • [24] Shortcut learning in deep neural networks
    Robert Geirhos
    Jörn-Henrik Jacobsen
    Claudio Michaelis
    Richard Zemel
    Wieland Brendel
    Matthias Bethge
    Felix A. Wichmann
    Nature Machine Intelligence, 2020, 2 : 665 - 673
  • [25] Fast learning in Deep Neural Networks
    Chandra, B.
    Sharma, Rajesh K.
    NEUROCOMPUTING, 2016, 171 : 1205 - 1215
  • [26] Deep associative learning for neural networks
    Liu, Jia
    Zhang, Wenhua
    Liu, Fang
    Xiao, Liang
    NEUROCOMPUTING, 2021, 443 (443) : 222 - 234
  • [27] Collaborative Learning for Deep Neural Networks
    Song, Guocong
    Chai, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [28] Big learning and deep neural networks
    Montavon, Grégoire
    Müller, Klaus-Robert
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 7700 LECTURE NO : 419 - 420
  • [29] Multiplierless Neural Networks for Deep Learning
    Banduka, Maja Lutovac
    Lutovac, Miroslav
    2024 13TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING, MECO 2024, 2024, : 262 - 265
  • [30] Shortcut learning in deep neural networks
    Geirhos, Robert
    Jacobsen, Joern-Henrik
    Michaelis, Claudio
    Zemel, Richard
    Brendel, Wieland
    Bethge, Matthias
    Wichmann, Felix A.
    NATURE MACHINE INTELLIGENCE, 2020, 2 (11) : 665 - 673