Landscape trajectory analysis: Spatio-temporal dynamics from image time series

被引:0
|
作者
Henebry, GM [1 ]
Goodin, DG [1 ]
机构
[1] Univ Nebraska, CALMIT, Lincoln, NE 68588 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Landscape dynamics can be revealed through analysis of image times series. The temporal development of spatial patterns holds significant information about ecosystem processes. Yet, the tools for the characterization of spatio-temporal structure are few. We describe some of the challenges facing spatio-temporal analysis and demonstrate a method for identifying and measuring pattern in image time series using a standard data product, the USGS maximum AVHRR NDVI biweekly composites for 1990-2000. We selected six distinct and diverse ecoregions as delineated and recently revised by Omernik and colleagues. The analysis extracts expectations of landscape spatial pattern during the growing season. The resulting landscape trajectories can serve as building blocks for the development of operational environmental monitoring and ecological forecasting systems.
引用
收藏
页码:2375 / 2378
页数:4
相关论文
共 50 条
  • [1] Modeling trajectory of dynamic clusters in image time-series for spatio-temporal reasoning
    Héas, P
    Datcu, M
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (07): : 1635 - 1647
  • [2] Spatio-Temporal Characterization in Satellite Image Time Series
    Radoi, Anamaria
    Datcu, Mihai
    [J]. 2015 8TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTI-TEMP), 2015,
  • [3] Spatio-temporal analysis of sar image series from the Brazilian pantanal
    Henebry, GM
    Kux, HJH
    [J]. THIRD ERS SYMPOSIUM ON SPACE AT THE SERVICE OF OUR ENVIRONMENT, VOL 1, 1997, 414 : 321 - 324
  • [4] Spatio-temporal reasoning for the classification of satellite image time series
    Petitjean, Francois
    Kurtz, Camille
    Passat, Nicolas
    Gancarski, Pierre
    [J]. PATTERN RECOGNITION LETTERS, 2012, 33 (13) : 1805 - 1815
  • [5] SPATIO-TEMPORAL REGIONS' SIMILARITY FRAMEWORK FOR VHR SATELLITE IMAGE TIME SERIES ANALYSIS
    Rejichi, S.
    Chaabane, F.
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2845 - 2848
  • [6] Spatio-temporal analysis of complex human physiologic time series
    Yang, Xiaodong
    He, Aijun
    Bian, Chunhua
    Ning, Xinbao
    [J]. 2008 INTERNATIONAL SPECIAL TOPIC CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS IN BIOMEDICINE, VOLS 1 AND 2, 2008, : 359 - 363
  • [7] Functional time series analysis of spatio-temporal epidemiological data
    Ruiz-Medina, M. D.
    Espejo, R. M.
    Ugarte, M. D.
    Militino, A. F.
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (04) : 943 - 954
  • [8] Detecting spatio-temporal and typological changes in land use from Landsat image time series
    Wang, Wenxiang
    Chen, Zhenjie
    Li, Xiang
    Tang, Haoqing
    Huang, Qiuhao
    Qu, Lean
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [9] Detecting spatio-temporal and typological changes in land use from Landsat image time series
    Wang, Wenxiang
    Chen, Zhenjie
    Li, Xiang
    Tang, Haoqing
    Huang, Qiuhao
    Qu, Lean
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2017, 11 (03)
  • [10] Spatio-temporal analysis of omni image
    Kawasaki, H
    Ikeuchi, K
    Sakauchi, M
    [J]. IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, VOL II, 2000, : 577 - 584