SPATIO-TEMPORAL REGIONS' SIMILARITY FRAMEWORK FOR VHR SATELLITE IMAGE TIME SERIES ANALYSIS

被引:2
|
作者
Rejichi, S. [1 ,2 ]
Chaabane, F. [1 ]
机构
[1] Carthage Univ, SupCom, COSIM Lab, Carthage, Tunisia
[2] Univ Tunis El Manar, ISI, Tunis, Tunisia
关键词
STIS analysis; Spatio-Temporal Map; Spatio-Temporal Region; Kullback-Leibler divergence;
D O I
10.1109/IGARSS.2016.7729735
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In remote sensing, temporal sequence of images called Satellite Image Time Series (SITS) covering the same scene allows land cover observation, understanding, analysis and monitoring. Nowadays, STIS are accessible with higher spatial and temporal resolution which hampers their interpretation. This paper presents a spatio-temporal regions' similarity framework using a novel matrix based on Kullback-Leibler (KL) divergence measure. To this end, an explicit definition of a Spatio-Temporal Region (STR) is given in order to build its characteristic matrix called Multi-Temporal Region Matrix (MTRM). Afterwards, using this matrix, a Cross-STR Similarity Matrix (CSTRSM) is computed between STR of in order to reveal regions with similar temporal fingerprint. Experiments are carried out on synthesized and compared to previously presented approaches for STIS analysis.
引用
收藏
页码:2845 / 2848
页数:4
相关论文
共 50 条
  • [1] FEATURE EXTRACTION USING PCA FOR VHR SATELLITE IMAGE TIME SERIES SPATIO-TEMPORAL CLASSIFICATION
    Rejichi, S.
    Chaabane, F.
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 485 - 488
  • [2] Spatio-Temporal Characterization in Satellite Image Time Series
    Radoi, Anamaria
    Datcu, Mihai
    [J]. 2015 8TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTI-TEMP), 2015,
  • [3] Spatio-temporal reasoning for the classification of satellite image time series
    Petitjean, Francois
    Kurtz, Camille
    Passat, Nicolas
    Gancarski, Pierre
    [J]. PATTERN RECOGNITION LETTERS, 2012, 33 (13) : 1805 - 1815
  • [4] Spatio-temporal Similarity Analysis Strategy of SAR Image Time Series for Land Development Intensity Monitoring
    Wang, Yafei
    Chen, Dong
    Zhou, Kan
    Guo, Rui
    [J]. 2015 23RD INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2015,
  • [5] A Spatio-Temporal Encoding Neural Network for Semantic Segmentation of Satellite Image Time Series
    Zhang, Feifei
    Wang, Yong
    Du, Yawen
    Zhu, Yijia
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [6] Spatio-Temporal Clustering and Active Learning for Change Classification in Satellite Image Time Series
    Debonnaire, Nicolas
    Stumpf, Andre
    Puissant, Anne
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (08) : 3642 - 3650
  • [7] SELF-SUPERVISED SPATIO-TEMPORAL REPRESENTATION LEARNING OF SATELLITE IMAGE TIME SERIES
    Dumeur, Iris
    Valero, Silvia
    Inglada, Jordi
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 642 - 645
  • [8] Self-Supervised Spatio-Temporal Representation Learning of Satellite Image Time Series
    Dumeur, Iris
    Valero, Silvia
    Inglada, Jordi
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 (4350-4367) : 4350 - 4367
  • [9] Spatio-temporal Evolution of Crop Fields in Sentinel-2 Satellite Image Time Series
    Solano-Correa, Yady Tatiana
    Bovolo, Francesca
    Bruzzone, Lorenzo
    Fernandez-Prieto, Diego
    [J]. 2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,
  • [10] GRAPH DYNAMIC EARTH NET: SPATIO-TEMPORAL GRAPH BENCHMARK FOR SATELLITE IMAGE TIME SERIES
    Dufourg, Corentin
    Pelletier, Charlotte
    May, Stephane
    Lefevre, Sebastien
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7164 - 7167