Functional time series analysis of spatio-temporal epidemiological data

被引:19
|
作者
Ruiz-Medina, M. D. [1 ]
Espejo, R. M. [1 ]
Ugarte, M. D. [2 ]
Militino, A. F. [2 ]
机构
[1] Univ Granada, Fac Sci, Dept Stat & Operat Res, E-18071 Granada, Spain
[2] Univ Publ Navarra, Dept Stat & Operat Res, Navarra, Spain
关键词
Disease mapping; Hilbert-valued processes; Kalman filtering; Penalized estimation; Spatio-temporal random fields; OCEAN SURFACE-TEMPERATURE; LOGISTIC DISCRIMINATION; HILBERTIAN PROCESSES; BASIS EXPANSIONS; MODELS; PREDICTION; REGRESSION; RISK;
D O I
10.1007/s00477-013-0794-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatio-temporal statistical models have been proposed for the analysis of the temporal evolution of the geographical pattern of mortality (or incidence) risks in disease mapping. However, as far as we know, functional approaches based on Hilbert-valued processes have not been used so far in this area. In this paper, the autoregressive Hilbertian process framework is adopted to estimate the functional temporal evolution of mortality relative risk maps. Specifically, the penalized functional estimation of log-relative risk maps is considered to smooth the classical standardized mortality ratio. The reproducing kernel Hilbert space (RKHS) norm is selected for definition of the penalty term. This RKHS-based approach is combined with the Kalman filtering algorithm for the spatio-temporal estimation of risk. Functional confidence intervals are also derived for detecting high risk areas. The proposed methodology is illustrated analyzing breast cancer mortality data in the provinces of Spain during the period 1975-2005. A simulation study is performed to compare the ARH(1) based estimation with the classical spatio-temporal conditional autoregressive approach.
引用
收藏
页码:943 / 954
页数:12
相关论文
共 50 条
  • [1] Functional time series analysis of spatio–temporal epidemiological data
    M. D. Ruiz-Medina
    R. M. Espejo
    M. D. Ugarte
    A. F. Militino
    [J]. Stochastic Environmental Research and Risk Assessment, 2014, 28 : 943 - 954
  • [2] Cellular time series: a data structure for spatio-temporal analysis and management of geoscience information
    Nabaei, Sina
    Saghafian, Bahram
    [J]. JOURNAL OF HYDROINFORMATICS, 2019, 21 (06) : 999 - 1013
  • [3] Spatio-temporal analysis of complex human physiologic time series
    Yang, Xiaodong
    He, Aijun
    Bian, Chunhua
    Ning, Xinbao
    [J]. 2008 INTERNATIONAL SPECIAL TOPIC CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS IN BIOMEDICINE, VOLS 1 AND 2, 2008, : 359 - 363
  • [4] Spatio-temporal functional data analysis for wireless sensor networks data
    Lee, D. -J.
    Zhu, Z.
    Toscas, P.
    [J]. ENVIRONMETRICS, 2015, 26 (05) : 354 - 362
  • [5] Measures of spatio-temporal accuracy for time series land cover data
    Tsutsumida, Narumasa
    Comber, Alexis J.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 41 : 46 - 55
  • [6] Visual exploration of spatio-temporal patterns in epidemiological data
    Mayala, B. K.
    [J]. TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2007, 12 : 195 - 196
  • [7] A spatio-temporal regression model for the analysis of functional MRI data
    Katanoda, K
    Matsuda, Y
    Sugishita, M
    [J]. NEUROIMAGE, 2002, 17 (03) : 1415 - 1428
  • [8] An association measure for spatio-temporal time series
    Kappara, Divya
    Bose, Arup
    Bhattacharjee, Madhuchhanda
    [J]. METRIKA, 2023,
  • [9] Integrating GIS and external tools for spatio-temporal analysis of time series of remote sensing data
    Brandt, J
    Knudsen, T
    [J]. FUTURE TRENDS IN REMOTE SENSING, 1998, : 117 - 123
  • [10] Spatio-temporal functional regression on paleoecological data
    Bel, Liliane
    Bar-Hen, Avner
    Petit, Remy
    Cheddadi, Rachid
    [J]. JOURNAL OF APPLIED STATISTICS, 2011, 38 (04) : 695 - 704