Compressed Sensing via Dictionary Learning and Approximate Message Passing for Multimedia Internet of Things

被引:25
|
作者
Li, Zhicheng [1 ,2 ,3 ]
Huang, Hong [3 ]
Misra, Satyajayant [4 ]
机构
[1] Harbin Inst Technol, Harbin 150001, Peoples R China
[2] Sun Yat Sen Univ, Sch Elect & Informat Technol, SYSU CMU Joint Inst Engn, Guangzhou 510275, Guangdong, Peoples R China
[3] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
[4] New Mexico State Univ, Dept Comp Sci, Las Cruces, NM 88003 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2017年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
Approximate message passing (AMP); compressed sensing (CS); dictionary learning (DL); Internet of Things (IoT); sequential generalization of K-means (SGK); ALGORITHMS;
D O I
10.1109/JIOT.2016.2583465
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a compressed sensing-based approach, which combines the dictionary learning (DL) method and the approximate message passing (AMP) approach. The approach can be used for efficient communication in the multimedia Internet of Things (IoT). AMP is a signal reconstruction algorithm framework, which can be explained as an iterative denoising process. On the other hand, the DL method seeks an adaptive dictionary for realizing sparse signal representations, and provides good performance in signal denoising. We apply the DL-based denoising method within the AMP algorithm framework and propose a novel DL-AMP framework. We demonstrate our framework's effectiveness for multimedia IoT devices by showing its capability in reducing required communication bandwidth for multimedia communication while improving reconstruction quality (by over 2 dB).
引用
收藏
页码:505 / 512
页数:8
相关论文
共 50 条
  • [1] Image Compressed Sensing Based on Dictionary Learning via Bilinear Generalized Approximate Message Passing
    Si, Jingjing
    Wang, Jiaoyun
    Cheng, Yinbo
    [J]. TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [2] Compressed Sensing With Upscaled Vector Approximate Message Passing
    Skuratovs, Nikolajs
    Davies, Michael E.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4818 - 4836
  • [3] VECTOR APPROXIMATE MESSAGE PASSING FOR QUANTIZED COMPRESSED SENSING
    Franz, Daniel
    Kuehn, Volker
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 341 - 345
  • [4] MULTI-RESOLUTION COMPRESSED SENSING RECONSTRUCTION VIA APPROXIMATE MESSAGE PASSING
    Wang, Xing
    Liang, Jie
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4352 - 4356
  • [5] Multi-Resolution Compressed Sensing Reconstruction Via Approximate Message Passing
    Wang, Xing
    Liang, Jie
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2016, 2 (03) : 218 - 234
  • [6] SIDE INFORMATION-AIDED COMPRESSED SENSING RECONSTRUCTION VIA APPROXIMATE MESSAGE PASSING
    Wang, Xing
    Liang, Jie
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [7] Distributed Compressed Sensing via Generalized Approximate Message Passing for Jointly Sparse Signals
    Si, Jingjing
    Cheng, Yinbo
    Liu, Kai
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (04) : 702 - 707
  • [8] Performance Analysis of Approximate Message Passing for Distributed Compressed Sensing
    Hannak, Gabor
    Perelli, Alessandro
    Goertz, Norbert
    Matz, Gerald
    Davies, Mike E.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (05) : 857 - 870
  • [9] On Approximate Message Passing for Unsourced Access with Coded Compressed Sensing
    Amalladinne, Vamsi K.
    Pradhan, Asit Kumar
    Rush, Cynthia
    Chamberland, Jean-Francois
    Narayanan, Krishna R.
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2995 - 3000
  • [10] WEIGHTED-DAMPED APPROXIMATE MESSAGE PASSING FOR COMPRESSED SENSING
    Wang, Shengchu
    Li, Yunzhou
    Gao, Zhen
    Wang, Jing
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5865 - 5869