MULTI-RESOLUTION COMPRESSED SENSING RECONSTRUCTION VIA APPROXIMATE MESSAGE PASSING

被引:0
|
作者
Wang, Xing [1 ]
Liang, Jie [1 ]
机构
[1] Simon Fraser Univ, Sch Engn Sci, Burnaby, BC V5A 1S6, Canada
关键词
Compressed sensing; approximate message passing; multi-resolution; state evolution; phase transition;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider multi-resolution (MR) compressed sensing reconstruction, where instead of always reconstructing the signal at the original high resolution (HR), we enable the reconstruction of a better-quality low-resolution (LR) signal when the sampling rate is too low. We propose an approximate message passing (AMP)-based solution (MR-AMP). Theoretical analyses show that in addition to reduced complexity, our method can produce a LR signal with bounded mean squared error (MSE) even when the MSE of the conventional HR reconstruction is unbounded. The performance of the proposed scheme is verified using both synthetic data and natural images.
引用
收藏
页码:4352 / 4356
页数:5
相关论文
共 50 条
  • [1] Multi-Resolution Compressed Sensing Reconstruction Via Approximate Message Passing
    Wang, Xing
    Liang, Jie
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2016, 2 (03) : 218 - 234
  • [2] SIDE INFORMATION-AIDED COMPRESSED SENSING RECONSTRUCTION VIA APPROXIMATE MESSAGE PASSING
    Wang, Xing
    Liang, Jie
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [3] Compressed Sensing With Upscaled Vector Approximate Message Passing
    Skuratovs, Nikolajs
    Davies, Michael E.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4818 - 4836
  • [4] VECTOR APPROXIMATE MESSAGE PASSING FOR QUANTIZED COMPRESSED SENSING
    Franz, Daniel
    Kuehn, Volker
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 341 - 345
  • [5] Compressed Sensing via Dictionary Learning and Approximate Message Passing for Multimedia Internet of Things
    Li, Zhicheng
    Huang, Hong
    Misra, Satyajayant
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2017, 4 (02): : 505 - 512
  • [6] Distributed Compressed Sensing via Generalized Approximate Message Passing for Jointly Sparse Signals
    Si, Jingjing
    Cheng, Yinbo
    Liu, Kai
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (04) : 702 - 707
  • [7] Performance Analysis of Approximate Message Passing for Distributed Compressed Sensing
    Hannak, Gabor
    Perelli, Alessandro
    Goertz, Norbert
    Matz, Gerald
    Davies, Mike E.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (05) : 857 - 870
  • [8] On Approximate Message Passing for Unsourced Access with Coded Compressed Sensing
    Amalladinne, Vamsi K.
    Pradhan, Asit Kumar
    Rush, Cynthia
    Chamberland, Jean-Francois
    Narayanan, Krishna R.
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2995 - 3000
  • [9] WEIGHTED-DAMPED APPROXIMATE MESSAGE PASSING FOR COMPRESSED SENSING
    Wang, Shengchu
    Li, Yunzhou
    Gao, Zhen
    Wang, Jing
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5865 - 5869
  • [10] Location constrained approximate message passing for compressed sensing MRI
    Sung, Kyunghyun
    Daniel, Bruce L.
    Hargreaves, Brian A.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2013, 70 (02) : 370 - 381