Bernoulli actions of sofic groups have completely positive entropy

被引:18
|
作者
Kerr, David [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
AMENABLE GROUP-ACTIONS; MALLEABLE ACTIONS; SUPERRIGIDITY; CONSTRUCTION;
D O I
10.1007/s11856-014-1077-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every Bernoulli action of a sofic group has completely positive entropy with respect to every sofic approximation net. We also prove that every Bernoulli action of a finitely generated free group has the property that each of its nontrivial factors with a finite generating partition has positive f-invariant.
引用
收藏
页码:461 / 474
页数:14
相关论文
共 50 条
  • [31] Dyadic equivalence to completely positive entropy
    Fieldsteel, A
    Hasfura-Buenaga, JR
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (03) : 1143 - 1166
  • [32] Cost, ℓ2-Betti numbers and the sofic entropy of some algebraic actions
    Damien Gaboriau
    Brandon Seward
    [J]. Journal d'Analyse Mathématique, 2019, 139 : 1 - 65
  • [33] A minimal completely positive entropy non-uniformly positive entropy example
    Song, Bailing
    Ye, Xiangdong
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (01) : 87 - 95
  • [34] Expansive actions with specification of sofic groups, strong topological Markov property, and surjunctivity
    Ceccherini-Silberstein, Tullio
    Coornaert, Michel
    Li, Hanfeng
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (09)
  • [35] COMPLETELY POSITIVE MULTIPLIERS OF QUANTUM GROUPS
    Daws, Matthew
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (12)
  • [36] Cost, l2-Betti numbers and the sofic entropy of some algebraic actions
    Gaboriau, Damien
    Seward, Brandon
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 1 - 65
  • [37] A hierarchy of topological systems with completely positive entropy
    Barbieri, Sebastian
    Garcia-Ramos, Felipe
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2021, 143 (02): : 639 - 680
  • [38] A hierarchy of topological systems with completely positive entropy
    Sebastián Barbieri
    Felipe García-Ramos
    [J]. Journal d'Analyse Mathématique, 2021, 143 : 639 - 680
  • [39] ENTROPY BEHAVIOR UNDER COMPLETELY POSITIVE MAPS
    BENATTI, F
    NARNHOFER, H
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1988, 15 (04) : 325 - 334
  • [40] Free entropy with respect to a completely positive map
    Shlyakhtenko, D
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (01) : 45 - 81