Codes Correcting a Burst of Deletions or Insertions

被引:91
|
作者
Schoeny, Clayton [1 ]
Wachter-Zeh, Antonia [2 ,3 ]
Gabrys, Ryan [4 ]
Yaakobi, Eitan [2 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Technion Israel Inst Technol, Comp Sci Dept, IL-32000 Haifa, Israel
[3] Tech Univ Munich, Inst Commun Engn, D-80333 Munich, Germany
[4] Spawar Syst Ctr, San Diego, CA 92152 USA
基金
以色列科学基金会; 欧盟地平线“2020”;
关键词
Insertions; deletions; burst correcting codes;
D O I
10.1109/TIT.2017.2661747
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies codes that correct a burst of deletions or insertions. Namely, a code will be called a b-burst-deletion/insertion-correcting code if it can correct a burst of deletions/insertions of any b consecutive bits. While the lower bound on the redundancy of such codes was shown by Levenshtein to be asymptotically log(n) + b - 1, the redundancy of the best code construction by Cheng et al. is b(log(n/b + 1)). In this paper, we close on this gap and provide codes with redundancy at most log(n) + (b - 1) log(log(n)) + b - log(b). We first show that the models of insertions and deletions are equivalent and thus it is enough to study codes correcting a burst of deletions. We then derive a non-asymptotic upper bound on the size of b-burst-deletion-correcting codes and extend the burst deletion model to two more cases: 1) a deletion burst of at most b consecutive bits and 2) a deletion burst of size at most b (not necessarily consecutive). We extend our code construction for the first case and study the second case for b = 3, 4.
引用
收藏
页码:1971 / 1985
页数:15
相关论文
共 50 条
  • [1] Codes Correcting a Burst of Deletions or Insertions
    Schoeny, Clayton
    Wachter-Zeh, Antonia
    Gabrys, Ryan
    Yaakobi, Eitan
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 630 - 634
  • [2] Rate Efficient Codes Correcting a Burst of Deletions or Insertions
    Yi, Chen
    Han, Xuesong
    Li, Yong
    Zhou, Jihua
    He, Jiguang
    Li, Chunguo
    [J]. IEEE COMMUNICATIONS LETTERS, 2024, 28 (06) : 1253 - 1257
  • [3] Improved bounds for codes correcting insertions and deletions
    Yasunaga, Kenji
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (05) : 1267 - 1278
  • [4] Improved bounds for codes correcting insertions and deletions
    Kenji Yasunaga
    [J]. Designs, Codes and Cryptography, 2024, 92 : 1267 - 1278
  • [5] Multipermutation Codes Correcting a Burst of Deletions
    Zhao, Peng
    Mu, Jianjun
    He, Yucheng
    Jiao, Xiaopeng
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (02): : 535 - 538
  • [6] EFFICIENT LINEAR AND AFFINE CODES FOR CORRECTING INSERTIONS/DELETIONS
    Cheng, Kuan
    Guruswami, Venkatesan
    Haeupler, Bernhard
    Li, Xin
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 748 - 778
  • [7] Asymptotically good codes correcting insertions, deletions, and transpositions
    Schulman, LJ
    Zuckerman, D
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2552 - 2557
  • [8] Asymptotically good codes correcting insertions, deletions, and transpositions
    Schulman, LJ
    Zuckerman, D
    [J]. PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1997, : 669 - 674
  • [9] Codes for Correcting Three or More Adjacent Deletions or Insertions
    Cheng, Ling
    Swart, Theo G.
    Ferreira, Hendrik C.
    Abdel-Ghaffar, Khaled A. S.
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1246 - 1250
  • [10] Interleaved Constrained Codes With Markers Correcting Bursts of Insertions or Deletions
    Smith, Dylan
    Swart, Theo G.
    Abdel-Ghaffar, Khaled A. S.
    Ferreira, Hendrik C.
    Cheng, Ling
    [J]. IEEE COMMUNICATIONS LETTERS, 2017, 21 (04) : 702 - 705