Rate Efficient Codes Correcting a Burst of Deletions or Insertions

被引:0
|
作者
Yi, Chen [1 ,2 ]
Han, Xuesong [3 ]
Li, Yong [3 ]
Zhou, Jihua [2 ]
He, Jiguang [4 ]
Li, Chunguo [5 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Aerosp New Generat Commun Co Ltd, Chongqing 401332, Peoples R China
[3] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[4] Technol Innovat Inst, Abu Dhabi, U Arab Emirates
[5] Southeast Univ, Sch Informat Sci & Engn, Nanjing 210096, Peoples R China
关键词
Codes; Symbols; Receivers; Vectors; Termination of employment; Synchronization; Decoding; Binary marker code; Varshamov-Tenengol'ts (VT) code; burst deletions/insertions; maximum distance separable (MDS) code;
D O I
10.1109/LCOMM.2024.3391172
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, we construct two rate efficient codes of length n named as marker-MDS and marker-SVT codes which correct a burst of deletions/insertions of length b (error-free decoding), where b is not necessarily fixed as a constant but is proportional to n , i.e., b = tn , 0 < t < 1 . Both of these two codes consist of binary marker codes which are employed to locate the burst of deletions/insertions. Also, the marker-MDS and marker-SVT codes consist of the maximum distance separable (MDS) codes and shifted Varshamov-Tenengol'ts (SVT) codes, respectively, which are responsible for correcting erasures caused in the synchronization stage. Both the theoretical and simulation results verify that the constructed marker-MDS and marker-SVT codes provide the higher code rate than the existing run-length limited Varshamov-Tenengol'ts shifted Varshamov-Tenengol'ts (RLLVT-SVT) codes if n is not smaller than a lower bound f(t) which is determined by t .
引用
收藏
页码:1253 / 1257
页数:5
相关论文
共 50 条
  • [1] Codes Correcting a Burst of Deletions or Insertions
    Schoeny, Clayton
    Wachter-Zeh, Antonia
    Gabrys, Ryan
    Yaakobi, Eitan
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 630 - 634
  • [2] Codes Correcting a Burst of Deletions or Insertions
    Schoeny, Clayton
    Wachter-Zeh, Antonia
    Gabrys, Ryan
    Yaakobi, Eitan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) : 1971 - 1985
  • [3] EFFICIENT LINEAR AND AFFINE CODES FOR CORRECTING INSERTIONS/DELETIONS
    Cheng, Kuan
    Guruswami, Venkatesan
    Haeupler, Bernhard
    Li, Xin
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 748 - 778
  • [4] Improved bounds for codes correcting insertions and deletions
    Yasunaga, Kenji
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (05) : 1267 - 1278
  • [5] Improved bounds for codes correcting insertions and deletions
    Kenji Yasunaga
    [J]. Designs, Codes and Cryptography, 2024, 92 : 1267 - 1278
  • [6] Multipermutation Codes Correcting a Burst of Deletions
    Zhao, Peng
    Mu, Jianjun
    He, Yucheng
    Jiao, Xiaopeng
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (02): : 535 - 538
  • [7] Rate-Improved Permutation Codes for Correcting a Single Burst of Deletions
    Han, Hui
    Mu, Jianjun
    He, Yu-Cheng
    Jiao, Xiaopeng
    Ma, Wenping
    [J]. IEEE COMMUNICATIONS LETTERS, 2021, 25 (01) : 49 - 53
  • [8] Asymptotically good codes correcting insertions, deletions, and transpositions
    Schulman, LJ
    Zuckerman, D
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2552 - 2557
  • [9] Asymptotically good codes correcting insertions, deletions, and transpositions
    Schulman, LJ
    Zuckerman, D
    [J]. PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1997, : 669 - 674
  • [10] Codes for Correcting Three or More Adjacent Deletions or Insertions
    Cheng, Ling
    Swart, Theo G.
    Ferreira, Hendrik C.
    Abdel-Ghaffar, Khaled A. S.
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1246 - 1250