Rate Efficient Codes Correcting a Burst of Deletions or Insertions

被引:0
|
作者
Yi, Chen [1 ,2 ]
Han, Xuesong [3 ]
Li, Yong [3 ]
Zhou, Jihua [2 ]
He, Jiguang [4 ]
Li, Chunguo [5 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Aerosp New Generat Commun Co Ltd, Chongqing 401332, Peoples R China
[3] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[4] Technol Innovat Inst, Abu Dhabi, U Arab Emirates
[5] Southeast Univ, Sch Informat Sci & Engn, Nanjing 210096, Peoples R China
关键词
Codes; Symbols; Receivers; Vectors; Termination of employment; Synchronization; Decoding; Binary marker code; Varshamov-Tenengol'ts (VT) code; burst deletions/insertions; maximum distance separable (MDS) code;
D O I
10.1109/LCOMM.2024.3391172
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, we construct two rate efficient codes of length n named as marker-MDS and marker-SVT codes which correct a burst of deletions/insertions of length b (error-free decoding), where b is not necessarily fixed as a constant but is proportional to n , i.e., b = tn , 0 < t < 1 . Both of these two codes consist of binary marker codes which are employed to locate the burst of deletions/insertions. Also, the marker-MDS and marker-SVT codes consist of the maximum distance separable (MDS) codes and shifted Varshamov-Tenengol'ts (SVT) codes, respectively, which are responsible for correcting erasures caused in the synchronization stage. Both the theoretical and simulation results verify that the constructed marker-MDS and marker-SVT codes provide the higher code rate than the existing run-length limited Varshamov-Tenengol'ts shifted Varshamov-Tenengol'ts (RLLVT-SVT) codes if n is not smaller than a lower bound f(t) which is determined by t .
引用
收藏
页码:1253 / 1257
页数:5
相关论文
共 50 条
  • [21] Permutation Codes Correcting a Single Burst Deletion II: Stable Deletions
    Chee, Yeow Meng
    Ling, San
    Tuan Thanh Nguyen
    Van Khu Vu
    Wei, Hengjia
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2688 - 2692
  • [22] Non-binary Codes for Correcting a Burst of at Most 2 Deletions
    Wang, Shuche
    Sima, Jin
    Farnoud, Farzad
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 2804 - 2809
  • [23] Permutation Codes Correcting a Single Burst Deletion I: Unstable Deletions
    Chee, Yeow Meng
    Van Khu Vu
    Zhang, Xiande
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1741 - 1745
  • [24] Non-Binary Codes for Correcting a Burst of at Most t Deletions
    Wang, Shuche
    Tang, Yuanyuan
    Sima, Jin
    Gabrys, Ryan
    Farnoud, Farzad
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (02) : 964 - 979
  • [25] Covering Codes for Insertions and Deletions
    Lenz, Andreas
    Rashtchian, Cyrus
    Siegel, Paul H.
    Yaakobi, Eitan
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 723 - 728
  • [26] Optimal Two-Dimensional Reed-Solomon Codes Correcting Insertions and Deletions
    Con, Roni
    Shpilka, Amir
    Tamo, Itzhak
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (07) : 5012 - 5016
  • [27] A FAMILY OF EFFICIENT BURST-CORRECTING ARRAY CODES
    BLAUM, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) : 671 - 676
  • [28] An Improvement of Non-binary Code Correcting Single b-Burst of Insertions or Deletions
    Saeki, Toyohiko
    Nozaki, Takayuki
    PROCEEDINGS OF 2018 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2018), 2018, : 6 - 10
  • [29] Efficient Low-Redundancy Codes for Correcting Multiple Deletions
    Brakensiek, Joshua
    Guruswami, Venkatesan
    Zbarsky, Samuel
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (05) : 3403 - 3410
  • [30] Efficient Systematic Deletions/Insertions of 0's Error Control Codes
    Tallini, Luca G.
    Alqwaifly, Nawaf
    Bose, Bella
    2022 IEEE INFORMATION THEORY WORKSHOP (ITW), 2022, : 570 - 575