Codes Correcting a Burst of Deletions or Insertions

被引:91
|
作者
Schoeny, Clayton [1 ]
Wachter-Zeh, Antonia [2 ,3 ]
Gabrys, Ryan [4 ]
Yaakobi, Eitan [2 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Technion Israel Inst Technol, Comp Sci Dept, IL-32000 Haifa, Israel
[3] Tech Univ Munich, Inst Commun Engn, D-80333 Munich, Germany
[4] Spawar Syst Ctr, San Diego, CA 92152 USA
基金
以色列科学基金会; 欧盟地平线“2020”;
关键词
Insertions; deletions; burst correcting codes;
D O I
10.1109/TIT.2017.2661747
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies codes that correct a burst of deletions or insertions. Namely, a code will be called a b-burst-deletion/insertion-correcting code if it can correct a burst of deletions/insertions of any b consecutive bits. While the lower bound on the redundancy of such codes was shown by Levenshtein to be asymptotically log(n) + b - 1, the redundancy of the best code construction by Cheng et al. is b(log(n/b + 1)). In this paper, we close on this gap and provide codes with redundancy at most log(n) + (b - 1) log(log(n)) + b - log(b). We first show that the models of insertions and deletions are equivalent and thus it is enough to study codes correcting a burst of deletions. We then derive a non-asymptotic upper bound on the size of b-burst-deletion-correcting codes and extend the burst deletion model to two more cases: 1) a deletion burst of at most b consecutive bits and 2) a deletion burst of size at most b (not necessarily consecutive). We extend our code construction for the first case and study the second case for b = 3, 4.
引用
收藏
页码:1971 / 1985
页数:15
相关论文
共 50 条
  • [21] Non-Binary Codes for Correcting a Burst of at Most t Deletions
    Wang, Shuche
    Tang, Yuanyuan
    Sima, Jin
    Gabrys, Ryan
    Farnoud, Farzad
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (02) : 964 - 979
  • [22] Covering Codes for Insertions and Deletions
    Lenz, Andreas
    Rashtchian, Cyrus
    Siegel, Paul H.
    Yaakobi, Eitan
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 723 - 728
  • [23] Optimal Two-Dimensional Reed-Solomon Codes Correcting Insertions and Deletions
    Con, Roni
    Shpilka, Amir
    Tamo, Itzhak
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (07) : 5012 - 5016
  • [24] An Improvement of Non-binary Code Correcting Single b-Burst of Insertions or Deletions
    Saeki, Toyohiko
    Nozaki, Takayuki
    [J]. PROCEEDINGS OF 2018 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2018), 2018, : 6 - 10
  • [25] Codes Correcting Two Deletions
    Gabrys, Ryan
    Sala, Frederic
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (02) : 965 - 974
  • [26] Codes for Correcting Localized Deletions
    Hanna, Serge Kas
    El Rouayheb, Salim
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (04) : 2206 - 2216
  • [27] Coding for Interactive Communication Correcting Insertions and Deletions
    Braverman, Mark
    Gelles, Ran
    Mao, Jieming
    Ostrovsky, Rafail
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) : 6256 - 6270
  • [28] Correcting Multiple Deletions and Insertions in Racetrack Memory
    Sima, Jin
    Bruck, Jehoshua
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (09) : 5619 - 5639
  • [29] Codes Correcting Two Deletions
    Gabrys, Ryan
    Sala, Frederic
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 426 - 430
  • [30] Covering Codes Using Insertions or Deletions
    Lenz, Andreas
    Rashtchian, Cyrus
    Siegel, Paul H.
    Yaakobi, Eitan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (06) : 3376 - 3388