GAS PLUME DETECTION IN HYPERSPECTRAL VIDEO SEQUENCE USING TENSOR NUCLEAR NORM

被引:0
|
作者
Shang, Wenting [1 ]
Wu, Zebin [1 ]
Wei, Jie [1 ]
Xu, Yang [1 ]
Qian, Ling [1 ]
Wei, Zhihui [1 ]
Chanussot, Jocelyn [2 ]
Bertozzi, Andrea L. [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Grenoble Inst Technol, GIPSA Lab, Grenoble, France
[3] UCLA, Dept Math, Los Angeles, CA USA
基金
美国国家科学基金会;
关键词
Hyperspectral video sequences (HVSs); Multi-feature Tensor Decomposition(MTD); low-rank; sparsity; 3-D total variation(3DTV);
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Gas plume detection (GPD) of Hyperspectral video sequences (HVSs) has become a hot topic in the field of remote sensing. The traditional IRIS processing methods reshape the extracted video to a 2-D matrix, which is at expense of destroying spatial or spectral structure. In this paper, we propose a novel method of Multi-feature Tensor Decomposition (MTD), where the 3-dimensional (3-D) structure of the extracted video can he seen as a 3-order tensor, thus the spatial and temporal structures in HVS are preserved. We employ the tensor nuclear norm to model the low-rank property of the background, and apply tensor sparse norm to constrain the sparsity of the gas plume. Moreover, taking into consideration the continuity in both spatial and temporal domain of the gas plume, we add a 3-D total variation regularization (3DTV) in the proposed detection model, and assume the support of the gas plume in different features are the same. The final objective function of gas plume detection is efficiently solved by augmented Lagrangian multiplier algorithm (ADMM). Experimental results demonstrate the effectiveness and high detection accuracy of the proposed method.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] GAS PLUME DETECTION IN HYPERSPECTRAL VIDEO SEQUENCE USING LOW RANK REPRESENTATION
    Xu, Yang
    Wu, Zebin
    Wei, Zhihui
    Dalla Mura, Mauro
    Chanussot, Jocelyn
    Bertozzi, Andrea
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2221 - 2225
  • [2] HYPERSPECTRAL ANOMALY DETECTION BASED ON LOCAL-TENSOR-NUCLEAR-NORM
    Mishima, Mio
    Kobayashi, Iori
    Matsuoka, Ryo
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2157 - 2160
  • [3] GAS PLUME DETECTION AND TRACKING IN HYPERSPECTRAL VIDEO SEQUENCES USING BINARY PARTITION TREES
    Tochon, G.
    Chanussot, J.
    Gilles, J.
    Dalla Mura, M.
    Chang, J-M.
    Bertozzi, A. L.
    [J]. 2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [4] GPU PARALLEL IMPLEMENTATION OF GAS PLUME DETECTION IN HYPERSPECTRAL VIDEO SEQUENCES
    Yu, Huimin
    Wu, Zebin
    Wei, Jie
    Xu, Yang
    Chanussot, Jocelyn
    Bertozzi, Andrea L.
    Shi, Linlin
    Wei, Zhihui
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2781 - 2784
  • [5] The Twist Tensor Nuclear Norm for Video Completion
    Hu, Wenrui
    Tao, Dacheng
    Zhang, Wensheng
    Xie, Yuan
    Yang, Yehui
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (12) : 2961 - 2973
  • [6] Flexible Hyperspectral Anomaly Detection Using Weighted Nuclear Norm
    Li, Lei
    Ren, Yuemei
    Ma, Jinming
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (02) : 243 - 250
  • [7] Detection and tracking of gas plumes in LWIR hyperspectral video sequence data
    Gerhart, Torin
    Sunu, Justin
    Lieu, Lauren
    Merkurjev, Ekaterina
    Chang, Jen-Mei
    Gilles, Jerome
    Bertozzi, Andrea L.
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIX, 2013, 8743
  • [8] A Tensor Regularized Nuclear Norm Method for Image and Video Completion
    A. H. Bentbib
    A. El Hachimi
    K. Jbilou
    A. Ratnani
    [J]. Journal of Optimization Theory and Applications, 2022, 192 : 401 - 425
  • [9] A Tensor Regularized Nuclear Norm Method for Image and Video Completion
    Bentbib, A. H.
    El Hachimi, A.
    Jbilou, K.
    Ratnani, A.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 192 (02) : 401 - 425
  • [10] HYPERSPECTRAL IMAGE DESTRIPING AND DENOISING WITH SPECTRAL LOW RANK AND TENSOR NUCLEAR NORM
    Liu, Pengfei
    Liu, Lanlan
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7304 - 7307