The Twist Tensor Nuclear Norm for Video Completion

被引:164
|
作者
Hu, Wenrui [1 ]
Tao, Dacheng [2 ]
Zhang, Wensheng [1 ]
Xie, Yuan [1 ]
Yang, Yehui [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[2] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Low-rank tensor estimation (LRTE); tensor multirank; tensor nuclear norm (TNN); twist tensor; video completion; RANK; IMAGE; DECOMPOSITIONS; FACTORIZATION; FRAMEWORK;
D O I
10.1109/TNNLS.2016.2611525
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.
引用
收藏
页码:2961 / 2973
页数:13
相关论文
共 50 条
  • [1] A Tensor Regularized Nuclear Norm Method for Image and Video Completion
    A. H. Bentbib
    A. El Hachimi
    K. Jbilou
    A. Ratnani
    [J]. Journal of Optimization Theory and Applications, 2022, 192 : 401 - 425
  • [2] A Tensor Regularized Nuclear Norm Method for Image and Video Completion
    Bentbib, A. H.
    El Hachimi, A.
    Jbilou, K.
    Ratnani, A.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 192 (02) : 401 - 425
  • [3] Twist tensor total variation regularized-reweighted nuclear norm based tensor completion for video missing area recovery
    Madathil, Baburaj
    George, Sudhish N.
    [J]. INFORMATION SCIENCES, 2018, 423 : 376 - 397
  • [4] Internet traffic tensor completion with tensor nuclear norm
    Li, Can
    Chen, Yannan
    Li, Dong-Hui
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 87 (03) : 1033 - 1057
  • [5] Internet traffic tensor completion with tensor nuclear norm
    Can Li
    Yannan Chen
    Dong-Hui Li
    [J]. Computational Optimization and Applications, 2024, 87 : 1033 - 1057
  • [6] A weighted nuclear norm method for tensor completion
    College of Science, China Agricultural University, 100083 Beijing, China
    不详
    不详
    [J]. Int. J. Signal Process. Image Process. Pattern Recogn., 1 (1-12):
  • [7] Truncated Nuclear Norm Minimization for Tensor Completion
    Huang, Long-Ting
    So, H. C.
    Chen, Yuan
    Wang, Wen-Qin
    [J]. 2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 417 - 420
  • [8] On Tensor Completion via Nuclear Norm Minimization
    Ming Yuan
    Cun-Hui Zhang
    [J]. Foundations of Computational Mathematics, 2016, 16 : 1031 - 1068
  • [9] On Tensor Completion via Nuclear Norm Minimization
    Yuan, Ming
    Zhang, Cun-Hui
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (04) : 1031 - 1068
  • [10] Nonlinear Transform Induced Tensor Nuclear Norm for Tensor Completion
    Li, Ben-Zheng
    Zhao, Xi-Le
    Ji, Teng-Yu
    Zhang, Xiong-Jun
    Huang, Ting-Zhu
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)