GAS PLUME DETECTION IN HYPERSPECTRAL VIDEO SEQUENCE USING LOW RANK REPRESENTATION

被引:0
|
作者
Xu, Yang [1 ]
Wu, Zebin [1 ]
Wei, Zhihui [1 ]
Dalla Mura, Mauro [2 ]
Chanussot, Jocelyn [2 ]
Bertozzi, Andrea [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Jiangsu, Peoples R China
[2] Grenoble Inst Technol, GIPSA Lab, Grenoble, France
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
基金
美国国家科学基金会;
关键词
gas plume detection; hyperspectral video sequence; low rank representation; total variation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Thanks to the fast development of sensors, it is now possible to acquire sequences of hyperspectral images. Those hyperspectral video sequences (HVS) are particularly suited for the detection and tracking of chemical gas plumes. In this paper, we present a novel gas plume detection method. It is based on the decomposition of the sequence into a low-rank and a sparse term, corresponding to the background and the plume, respectively, and incorporating temporal consistency. To introduce spatial continuity, a post processing is added using the Total Variation (TV) regularized model. Experimental results on real hyperspectral video sequences validate the effectiveness of the proposed method.
引用
收藏
页码:2221 / 2225
页数:5
相关论文
共 50 条
  • [1] GAS PLUME DETECTION IN HYPERSPECTRAL VIDEO SEQUENCE USING TENSOR NUCLEAR NORM
    Shang, Wenting
    Wu, Zebin
    Wei, Jie
    Xu, Yang
    Qian, Ling
    Wei, Zhihui
    Chanussot, Jocelyn
    Bertozzi, Andrea L.
    [J]. 2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [2] GAS PLUME DETECTION AND TRACKING IN HYPERSPECTRAL VIDEO SEQUENCES USING BINARY PARTITION TREES
    Tochon, G.
    Chanussot, J.
    Gilles, J.
    Dalla Mura, M.
    Chang, J-M.
    Bertozzi, A. L.
    [J]. 2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [3] Hyperspectral anomaly detection using low-rank representation and learned dictionary
    Niu Yu-Bin
    Wang Bin
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2016, 35 (06) : 731 - 740
  • [4] GPU PARALLEL IMPLEMENTATION OF GAS PLUME DETECTION IN HYPERSPECTRAL VIDEO SEQUENCES
    Yu, Huimin
    Wu, Zebin
    Wei, Jie
    Xu, Yang
    Chanussot, Jocelyn
    Bertozzi, Andrea L.
    Shi, Linlin
    Wei, Zhihui
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2781 - 2784
  • [5] LOW-RANK AND COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL ANOMALY DETECTION
    Wu, Zhaoyue
    Su, Hongjun
    Du, Qian
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1394 - 1397
  • [6] Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
    Pagare, M. S.
    Risodkar, Y. R.
    [J]. 2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMMUNICATION AND COMPUTING TECHNOLOGY (ICACCT), 2018, : 594 - 597
  • [7] Weakly Supervised Low-Rank Representation for Hyperspectral Anomaly Detection
    Xie, Weiying
    Zhang, Xin
    Li, Yunsong
    Lei, Jie
    Li, Jiaojiao
    Du, Qian
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (08) : 3889 - 3900
  • [8] Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection
    Wang, Minghua
    Wang, Qiang
    Hong, Danfeng
    Roy, Swalpa Kumar
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 679 - 691
  • [9] MANIFOLD REGULARIZED LOW-RANK REPRESENTATION FOR HYPERSPECTRAL ANOMALY DETECTION
    Cheng, Tongkai
    Wang, Bin
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2853 - 2856
  • [10] Hyperspectral Anomaly Detection Based on Low-Rank Representation Using Local Outlier Factor
    Yu, Shaoqi
    Li, Xiaorun
    Zhao, Liaoying
    Wang, Jing
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (07) : 1279 - 1283