Weakly Supervised Low-Rank Representation for Hyperspectral Anomaly Detection

被引:60
|
作者
Xie, Weiying [1 ]
Zhang, Xin [1 ]
Li, Yunsong [1 ]
Lei, Jie [1 ,2 ]
Li, Jiaojiao [1 ]
Du, Qian [3 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Sci & Technol Electroopt Control Lab, Luoyang 471000, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39759 USA
基金
中国国家自然科学基金;
关键词
Estimation; Dictionaries; Image reconstruction; Hyperspectral imaging; Anomaly detection; Training data; Detectors; Adversarial learning; hyperspectral anomaly detection (HAD); weakly supervised low-rank representation (WSLRR); COLLABORATIVE REPRESENTATION; FEATURE-EXTRACTION; RX-ALGORITHM; SPARSE; RECONSTRUCTION; AUTOENCODER; NETWORK;
D O I
10.1109/TCYB.2021.3065070
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a weakly supervised low-rank representation (WSLRR) method for hyperspectral anomaly detection (HAD), which formulates deep learning-based HAD into a low-lank optimization problem not only characterizing the complex and diverse background in real HSIs but also obtaining relatively strong supervision information. Different from the existing unsupervised and supervised methods, we first model the background in a weakly supervised manner, which achieves better performance without prior information and is not restrained by richly correct annotation. Considering reconstruction biases introduced by the weakly supervised estimation, LRR is an effective method for further exploring the intricate background structures. Instead of directly applying the conventional LRR approaches, a dictionary-based LRR, including both observed training data and hidden learned data drawn by the background estimation model, is proposed. Finally, the derived low-rank part and sparse part and the result of the initial detection work together to achieve anomaly detection. Comparative analyses validate that the proposed WSLRR method presents superior detection performance compared with the state-of-the-art methods.
引用
收藏
页码:3889 / 3900
页数:12
相关论文
共 50 条
  • [1] LOW-RANK AND COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL ANOMALY DETECTION
    Wu, Zhaoyue
    Su, Hongjun
    Du, Qian
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1394 - 1397
  • [2] Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
    Pagare, M. S.
    Risodkar, Y. R.
    [J]. 2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMMUNICATION AND COMPUTING TECHNOLOGY (ICACCT), 2018, : 594 - 597
  • [3] Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection
    Wang, Minghua
    Wang, Qiang
    Hong, Danfeng
    Roy, Swalpa Kumar
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 679 - 691
  • [4] MANIFOLD REGULARIZED LOW-RANK REPRESENTATION FOR HYPERSPECTRAL ANOMALY DETECTION
    Cheng, Tongkai
    Wang, Bin
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2853 - 2856
  • [5] Generalized Nonconvex Low-Rank Tensor Representation for Hyperspectral Anomaly Detection
    Qin, Hao
    Shen, Qiangqiang
    Zeng, Haijin
    Chen, Yongyong
    Lu, Guangming
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [6] Hyperspectral anomaly detection using low-rank representation and learned dictionary
    Niu Yu-Bin
    Wang Bin
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2016, 35 (06) : 731 - 740
  • [7] TENSOR LOW-RANK SPARSE REPRESENTATION LEARNING FOR HYPERSPECTRAL ANOMALY DETECTION
    Xiao, Qingjiang
    Zhao, Liaoying
    Chen, Shuhan
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7356 - 7359
  • [8] Graph Regularized Low-Rank and Collaborative Representation for Hyperspectral Anomaly Detection
    Wu Qi
    Fan Yanguo
    Fan Bowen
    Yu Dingfeng
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (12)
  • [9] Hyperspectral Anomaly Detection Based on Low-Rank Representation and Learned Dictionary
    Niu, Yubin
    Wang, Bin
    [J]. REMOTE SENSING, 2016, 8 (04)
  • [10] Enhanced Tensor Low-Rank Representation Learning for Hyperspectral Anomaly Detection
    Xiao, Qingjiang
    Zhao, Liaoying
    Chen, Shuhan
    Li, Xiaorun
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20 : 1 - 5