TENSOR LOW-RANK SPARSE REPRESENTATION LEARNING FOR HYPERSPECTRAL ANOMALY DETECTION

被引:1
|
作者
Xiao, Qingjiang [1 ]
Zhao, Liaoying [1 ]
Chen, Shuhan [2 ]
机构
[1] Hangzhou Dianzi Univ, Comp & Software Sch, Hangzhou 310018, Peoples R China
[2] Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI); anomaly detection; tensor low-rank representation learning; sparse;
D O I
10.1109/IGARSS52108.2023.10283143
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Some existing anomaly detection methods convert a 3-D hyperspectral data cube into a 2-D matrix, which inevitably destroys the spatial-spectral structure information of the hyperspectral data, resulting in the degradation of detection performance. In this paper, we propose a tensor low-rank sparse representation learning (TLRAD) method for hyperspectral anomaly detection (HAD), which can effectively maintain the spatial-spectral structure of raw hyperspectral data. Specifically, based on tensor low-rank representation (TLRR) learning, both low-rank constraints and sparsity constraints are simultaneously imposed on the coefficient tensor to capture the global and local spatial-spectral structure information of hyperspectral image (HSI), respectively. For anomaly tensor, the tensor l21-norm is applied to encourage the group sparsity of anomalous pixels. Furthermore, the tensor robust principal component analysis (TRPCA) approach is utilized to construct a robust background dictionary tensor. Experimental results gained employing two real hyperspectral datasets prove the superiority of the proposed approach compared to some state-of-the-art algorithms.
引用
收藏
页码:7356 / 7359
页数:4
相关论文
共 50 条
  • [1] Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection
    Wang, Minghua
    Wang, Qiang
    Hong, Danfeng
    Roy, Swalpa Kumar
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 679 - 691
  • [2] Enhanced Tensor Low-Rank Representation Learning for Hyperspectral Anomaly Detection
    Xiao, Qingjiang
    Zhao, Liaoying
    Chen, Shuhan
    Li, Xiaorun
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20 : 1 - 5
  • [3] LOW-RANK AND SPARSE TENSOR RECOVERY FOR HYPERSPECTRAL ANOMALY DETECTION
    Dai, Jiahui
    Deng, Chenwei
    Wang, Wenzheng
    Liu, Xun
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1141 - 1144
  • [4] Robust Tensor Low-Rank Sparse Representation With Saliency Prior for Hyperspectral Anomaly Detection
    Xiao, Qingjiang
    Zhao, Liaoying
    Chen, Shuhan
    Li, Xiaorun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 20
  • [5] Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
    Pagare, M. S.
    Risodkar, Y. R.
    [J]. 2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMMUNICATION AND COMPUTING TECHNOLOGY (ICACCT), 2018, : 594 - 597
  • [6] Generalized Nonconvex Low-Rank Tensor Representation for Hyperspectral Anomaly Detection
    Qin, Hao
    Shen, Qiangqiang
    Zeng, Haijin
    Chen, Yongyong
    Lu, Guangming
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [7] Anomaly Detection in Hyperspectral Images Based on Low-Rank and Sparse Representation
    Xu, Yang
    Wu, Zebin
    Li, Jun
    Plaza, Antonio
    Wei, Zhihui
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (04): : 1990 - 2000
  • [8] Tensor low-rank sparse representation for tensor subspace learning
    Du, Shiqiang
    Shi, Yuqing
    Shan, Guangrong
    Wang, Weilan
    Ma, Yide
    [J]. NEUROCOMPUTING, 2021, 440 : 351 - 364
  • [9] LOW-RANK AND COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL ANOMALY DETECTION
    Wu, Zhaoyue
    Su, Hongjun
    Du, Qian
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1394 - 1397
  • [10] Tensor Approximation With Low-Rank Representation and Kurtosis Correlation Constraint for Hyperspectral Anomaly Detection
    Li, Zhuang
    Zhang, Ye
    Zhang, Junping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60