A Class of Variational-Hemivariational Inequalities for Bingham Type Fluids

被引:15
|
作者
Migorski, Stanislaw [1 ,2 ]
Dudek, Sylwia [3 ]
机构
[1] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[2] Jagiellonian Univ Krakow, Chair Optimizat & Control, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] Krakow Univ Technol, Fac Comp Sci & Telecommun, Dept Appl Math, Ul Warszawska 24, PL-31155 Krakow, Poland
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2022年 / 85卷 / 02期
基金
欧盟地平线“2020”;
关键词
Bingham type fluid; Variational-hemivariational inequality; Generalized subgradient; Leak and slip condition; Optimal control; FINITE-ELEMENT APPROXIMATION; GENERALIZED NEWTONIAN FLUID; BOUNDARY-CONDITIONS; STOKES EQUATIONS; WEAK SOLUTIONS; ERROR-BOUNDS; EXISTENCE; REGULARITY; FLOWS; MODEL;
D O I
10.1007/s00245-022-09855-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate a new class of elliptic variational-hemivariational inequalities without the relaxed monotonicity condition of the generalized subgradient. The inequality describes the mathematical model of the steady state flow of incompressible fluid of Bingham type in a bounded domain. The boundary condition represents a generalization of the no leak condition, and a multivalued and nonmonotone version of a nonlinear Navier-Fujita frictional slip condition. The analysis provides results on existence of solution to a variational-hemivariational inequality, continuous dependence of the solution on the data, existence of solutions to optimal control problems, and the dependence of the solution on the yield limit. The proofs profit from results of nonsmooth analysis and the theory of multivalued pseudomontone operators.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Numerical analysis of stationary variational-hemivariational inequalities
    Han, Weimin
    Sofonea, Mircea
    Danan, David
    NUMERISCHE MATHEMATIK, 2018, 139 (03) : 563 - 592
  • [42] Optimal Control of Elliptic Variational-Hemivariational Inequalities
    Peng, Zijia
    Kunisch, Karl
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (01) : 1 - 25
  • [43] A Fixed Point Approach of Variational-Hemivariational Inequalities
    Hu, Rong
    Sofonea, Mircea
    Xiao, Yi-Bin
    CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (03) : 573 - 581
  • [44] Existence and comparison results for variational-hemivariational inequalities
    S Carl
    Journal of Inequalities and Applications, 2005
  • [45] Minimization arguments in analysis of variational-hemivariational inequalities
    Sofonea, Mircea
    Han, Weimin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [46] Well-Posedness for a Class of Strongly Mixed Variational-Hemivariational Inequalities with Perturbations
    Ceng, Lu-Chuan
    Wong, Ngai-Ching
    Yao, Jen-Chih
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [47] Variational-hemivariational inequalities for multidimensional superpotential laws
    Pop, G
    Panagiotopoulos, PD
    Naniewicz, Z
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (7-8) : 827 - 841
  • [48] General Comparison Principle for Variational-Hemivariational Inequalities
    Carl, Siegfried
    Winkert, Patrick
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [49] A class of generalized mixed variational-hemivariational inequalities I: Existence and uniqueness results
    Bai, Yunru
    Migorski, Stanislaw
    Zeng, Shengda
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (10) : 2897 - 2911
  • [50] Three Nontrivial Solutions for Kirchhoff-Type Variational-Hemivariational Inequalities
    Chu, Jifeng
    Gharehgazlouei, Fariba
    Heidarkhani, Shapour
    Solimaninia, Arezoo
    RESULTS IN MATHEMATICS, 2015, 68 (1-2) : 71 - 91