A Class of Variational-Hemivariational Inequalities for Bingham Type Fluids

被引:15
|
作者
Migorski, Stanislaw [1 ,2 ]
Dudek, Sylwia [3 ]
机构
[1] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[2] Jagiellonian Univ Krakow, Chair Optimizat & Control, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] Krakow Univ Technol, Fac Comp Sci & Telecommun, Dept Appl Math, Ul Warszawska 24, PL-31155 Krakow, Poland
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2022年 / 85卷 / 02期
基金
欧盟地平线“2020”;
关键词
Bingham type fluid; Variational-hemivariational inequality; Generalized subgradient; Leak and slip condition; Optimal control; FINITE-ELEMENT APPROXIMATION; GENERALIZED NEWTONIAN FLUID; BOUNDARY-CONDITIONS; STOKES EQUATIONS; WEAK SOLUTIONS; ERROR-BOUNDS; EXISTENCE; REGULARITY; FLOWS; MODEL;
D O I
10.1007/s00245-022-09855-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate a new class of elliptic variational-hemivariational inequalities without the relaxed monotonicity condition of the generalized subgradient. The inequality describes the mathematical model of the steady state flow of incompressible fluid of Bingham type in a bounded domain. The boundary condition represents a generalization of the no leak condition, and a multivalued and nonmonotone version of a nonlinear Navier-Fujita frictional slip condition. The analysis provides results on existence of solution to a variational-hemivariational inequality, continuous dependence of the solution on the data, existence of solutions to optimal control problems, and the dependence of the solution on the yield limit. The proofs profit from results of nonsmooth analysis and the theory of multivalued pseudomontone operators.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] On the optimal control of variational-hemivariational inequalities
    Xiao, Yi-bin
    Sofonea, Mircea
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) : 364 - 384
  • [22] Existence theorems of the variational-hemivariational inequalities
    Guo-ji Tang
    Nan-jing Huang
    Journal of Global Optimization, 2013, 56 : 605 - 622
  • [23] EXISTENCE OF SOLUTIONS TO A NEW CLASS OF COUPLED VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
    Bai, Y. U. N. R. U.
    Migorski, Stanislaw
    Nguyen, Van Thien
    Peng, J. I. A. N. W. E. N.
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (05): : 499 - 516
  • [24] On convergence of solutions to variational-hemivariational inequalities
    Zeng, Biao
    Liu, Zhenhai
    Migorski, Stanislaw
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03):
  • [25] On regularity results for variational-hemivariational inequalities
    Naniewicz, Z
    Panagiotopoulos, PD
    DIRECT AND INVERSE PROBLEMS OF MATHEMATICAL PHYSICS, 2000, 5 : 301 - 322
  • [26] A class of hyperbolic variational-hemivariational inequalities without damping terms
    Zeng, Shengda
    Migorski, Stanislaw
    Van Thien Nguyen
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1287 - 1306
  • [27] Three solutions for an obstacle problem for a class of variational-hemivariational inequalities
    Chang, Gao
    Shen, Zifei
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (06) : 2063 - 2069
  • [28] A Revisit of Elliptic Variational-Hemivariational Inequalities
    Han, Weimin
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (04) : 371 - 395
  • [29] On variational-hemivariational inequalities in Banach spaces
    Han, Weimin
    Nashed, M. Z.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 124
  • [30] Solvability of nonlinear variational-hemivariational inequalities
    Filippakis, ME
    Papageorgiou, NS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (01) : 162 - 181