Knowledge sifter: Ontology-driven search over heterogeneous databases

被引:0
|
作者
Kerschberg, L [1 ]
Chowdhury, M [1 ]
Damiano, A [1 ]
Jeong, H [1 ]
Mitchell, S [1 ]
Si, J [1 ]
Smith, S [1 ]
机构
[1] George Mason Univ, E Ctr E Business, Fairfax, VA 22030 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge Sifter is a scaleable agent-based system that supports access to heterogeneous information sources such as the Meb, open-source repositories, XML-databases and the emerging Semantic Web. User query specification is supported by a user agent that accesses multiple ontologies using an integrated conceptual model. A collection of cooperating agents supports interactive query specification, refinement, decomposition, and processing, as well as result ranking and presentation. The Knowledge Sifter architecture is general and modular so that ontologies and information sources can be easily incorporated A proof-of-concept implementation depicts Knowledge Sifter using a domain ontology together with geo-spatial and semantic name services to enhance query formulation and to search image databases such as Lycos and TerraServer.
引用
收藏
页码:431 / 432
页数:2
相关论文
共 50 条
  • [1] Knowledge Sifter: Agent-based ontology-driven search over heterogeneous databases using semantic web services
    Kerschberg, L
    Chowdhury, M
    Damiano, A
    Jeong, H
    Mitchell, S
    Si, J
    Smith, S
    [J]. SEMANTICS OF A NETWORKED WORLD: SEMANTICS FOR GRID DATABASES, 2004, 3226 : 278 - 295
  • [2] Supporting Ontology-Driven Keyword Search over Relational Databases
    Elsayed, Ahmed
    Eldin, Ahmed Sharaf
    El Zanfaly, Doaa S.
    [J]. 2014 WORLD SYMPOSIUM ON COMPUTER APPLICATIONS & RESEARCH (WSCAR), 2014,
  • [3] Towards Ontology-driven Knowledge Synthesis for Heterogeneous Information Systems
    Robin G. Qiu
    [J]. Journal of Intelligent Manufacturing, 2006, 17 : 99 - 109
  • [4] Towards ontology-driven knowledge synthesis for heterogeneous information systems
    Qiu, RG
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2006, 17 (01) : 99 - 109
  • [5] Constructing ontology-driven protein family databases
    Wolstencroft, K
    McEntire, R
    Stevens, R
    Tabernero, L
    Brass, A
    [J]. BIOINFORMATICS, 2005, 21 (08) : 1685 - 1692
  • [6] An Ontology-Driven Personalized Faceted Search for Exploring Knowledge Bases of Capsicum
    Akbar, Zaenal
    Mustika, Hani Febri
    Rini, Dwi Setyo
    Manik, Lindung Parningotan
    Indrawati, Ariani
    Fefirenta, Agusdin Dharma
    Djarwaningsih, Tutie
    [J]. FUTURE INTERNET, 2021, 13 (07):
  • [7] On significance of ontology quality in ontology-driven Web search
    Strasunskas, Darijus
    Tomassen, Stein L.
    [J]. EMERGING TECHNOLOGIES AND INFORMATION SYSTEMS FOR THE KNOWLEDGE SOCIETY, PROCEEDINGS, 2008, 5288 : 469 - +
  • [8] Ontology-driven knowledge management on the grid
    Huang, H
    Shi, ZZ
    Qiu, LR
    Cheng, Y
    [J]. 2005 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, PROCEEDINGS, 2005, : 475 - 478
  • [9] Ontology-driven Semantic Search for Requirement Engineering
    [J]. 1600, John Wiley and Sons Inc (24):
  • [10] Ontology-driven representation of knowledge for geological maps
    Mantovani, Alizia
    Piana, Fabrizio
    Lombardo, Vincenzo
    [J]. COMPUTERS & GEOSCIENCES, 2020, 139