Knowledge sifter: Ontology-driven search over heterogeneous databases

被引:0
|
作者
Kerschberg, L [1 ]
Chowdhury, M [1 ]
Damiano, A [1 ]
Jeong, H [1 ]
Mitchell, S [1 ]
Si, J [1 ]
Smith, S [1 ]
机构
[1] George Mason Univ, E Ctr E Business, Fairfax, VA 22030 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge Sifter is a scaleable agent-based system that supports access to heterogeneous information sources such as the Meb, open-source repositories, XML-databases and the emerging Semantic Web. User query specification is supported by a user agent that accesses multiple ontologies using an integrated conceptual model. A collection of cooperating agents supports interactive query specification, refinement, decomposition, and processing, as well as result ranking and presentation. The Knowledge Sifter architecture is general and modular so that ontologies and information sources can be easily incorporated A proof-of-concept implementation depicts Knowledge Sifter using a domain ontology together with geo-spatial and semantic name services to enhance query formulation and to search image databases such as Lycos and TerraServer.
引用
收藏
页码:431 / 432
页数:2
相关论文
共 50 条
  • [11] Ontology-driven automated generation of data entry interfaces to databases
    Cannon, A
    Kennedy, JB
    Paterson, T
    Watson, MF
    [J]. KEY TECHNOLOGIES FOR DATA MANAGEMENT, 2004, 3112 : 150 - 164
  • [12] An integrated, ontology-driven approach to constructing observational databases for research
    Hsu, William
    Gonzalez, Nestor R.
    Chien, Aichi
    Villablanca, J. Pablo
    Pajukanta, Paivi
    Vinuela, Fernando
    Bui, Alex A. T.
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2015, 55 : 132 - 142
  • [13] Ontology-Driven Extraction of Event Logs from Relational Databases
    Calvanese, Diego
    Montali, Marco
    Syamsiyah, Alifah
    van der Aalst, Wil M. P.
    [J]. BUSINESS PROCESS MANAGEMENT WORKSHOPS, (BPM 2015), 2016, 256 : 140 - 153
  • [14] Empirical Insights on a Value of Ontology Quality in Ontology-Driven Web Search
    Strasunskas, Darijus
    Tomassen, Stein L.
    [J]. ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM 2008, PT II, PROCEEDINGS, 2008, 5332 : 1319 - +
  • [15] Ontology-driven word recommendation for mobile Web search
    Arechiga, Daniel
    Crestani, Fabio
    Vegas, Jesus
    [J]. KNOWLEDGE ENGINEERING REVIEW, 2014, 29 (02): : 186 - 200
  • [16] Ontology-driven Heterogeneous Geographic Data Set Integration
    Wu, Meng-quan
    Wang, Zhou-long
    Zhang, An-ding
    Yang, Hua
    [J]. PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL IV, 2009, : 207 - 211
  • [17] ONTOLOGY-DRIVEN ELEARNING SYSTEM IN SUPPORT OF KNOWLEDGE GATHERING
    Ivanova, Tatyana
    Ivanova, Malinka
    [J]. ANYWHERE, ANYTIME - EDUCATION ON DEMAND, VOL I, 2011, : 316 - 321
  • [18] An Ontology-driven Dynamic Knowledge Graph for Android Malware
    Christian, Ryan
    Dutta, Sharmishtha
    Park, Youngja
    Rastogi, Nidhi
    [J]. CCS '21: PROCEEDINGS OF THE 2021 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2021, : 2435 - 2437
  • [19] Ontology-driven knowledge sharing for networked organisation configuration
    Smirnov, Alexander
    Levashov, Tatiana
    Shilov, Nikolay
    [J]. ENTERPRISE INFORMATION SYSTEMS-BOOK, 2008, 3 : 179 - 193
  • [20] Incorporation of Ontology-driven Biological Knowledge into Cardiovascular Genomics
    Zheng, Huiru
    Wang, Haiying
    Azuaje, Francisco
    [J]. 2011 COMPUTING IN CARDIOLOGY, 2011, 38 : 565 - 568