Constructing ontology-driven protein family databases

被引:14
|
作者
Wolstencroft, K
McEntire, R
Stevens, R
Tabernero, L
Brass, A
机构
[1] Univ Manchester, Sch Biol Sci, Manchester M13 9PT, Lancs, England
[2] Univ Manchester, Dept Comp Sci, Manchester M13 9PL, Lancs, England
[3] GlaxoSmithKline, King Of Prussia, PA 19406 USA
基金
英国医学研究理事会;
关键词
D O I
10.1093/bioinformatics/bti158
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation:Protein family databases provide a central focus for scientific communities as well as providing useful resources to aide research. However, such resources require constant curation and often become outdated and discontinued. We have developed an ontology-driven system for capturing and managing protein family data that addresses the problems of maintenance and sustainability. Results:Using protein phosphatases and ABC transporters as model protein families, we constructed two protein family database resources around a central DAML+OIL ontology. Each resource contains specialist information about each protein family, providing specialized domain-specific resources based on the same template structure. The formal structure, combined with the extraction of biological data using GO terms, allows for automated update strategies. Despite the functional differences between the two protein families, the ontology model was equally applicable to both, demonstrating the generic nature of the system.
引用
收藏
页码:1685 / 1692
页数:8
相关论文
共 50 条
  • [1] An integrated, ontology-driven approach to constructing observational databases for research
    Hsu, William
    Gonzalez, Nestor R.
    Chien, Aichi
    Villablanca, J. Pablo
    Pajukanta, Paivi
    Vinuela, Fernando
    Bui, Alex A. T.
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2015, 55 : 132 - 142
  • [2] Ontology-driven automated generation of data entry interfaces to databases
    Cannon, A
    Kennedy, JB
    Paterson, T
    Watson, MF
    [J]. KEY TECHNOLOGIES FOR DATA MANAGEMENT, 2004, 3112 : 150 - 164
  • [3] Knowledge sifter: Ontology-driven search over heterogeneous databases
    Kerschberg, L
    Chowdhury, M
    Damiano, A
    Jeong, H
    Mitchell, S
    Si, J
    Smith, S
    [J]. 16TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, PROCEEDINGS, 2004, : 431 - 432
  • [4] Ontology-Driven Extraction of Event Logs from Relational Databases
    Calvanese, Diego
    Montali, Marco
    Syamsiyah, Alifah
    van der Aalst, Wil M. P.
    [J]. BUSINESS PROCESS MANAGEMENT WORKSHOPS, (BPM 2015), 2016, 256 : 140 - 153
  • [5] Supporting Ontology-Driven Keyword Search over Relational Databases
    Elsayed, Ahmed
    Eldin, Ahmed Sharaf
    El Zanfaly, Doaa S.
    [J]. 2014 WORLD SYMPOSIUM ON COMPUTER APPLICATIONS & RESEARCH (WSCAR), 2014,
  • [6] PhosphaBase: An ontology-driven database resource for protein phosphatases
    Wolstencroft, KJ
    Stevens, R
    Tabernero, L
    Brass, A
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 58 (02) : 290 - 294
  • [7] Ontology-driven conceptual modelling
    Guarino, N
    Schneider, L
    [J]. CONCEPTUAL MODELING - ER 2002, 2002, 2503 : 10 - 10
  • [8] Ontology-driven perspective of CFRaaS
    Kebande, Victor R.
    Karie, Nickson M.
    Ikuesan, Richard A.
    Venter, Hein S.
    [J]. WILEY INTERDISCIPLINARY REVIEWS: FORENSIC SCIENCE, 2020, 2 (05):
  • [9] Ontology-driven semantic mapping
    Beneventano, Domenico
    Dahlem, Nikolai
    El Haoum, Sabina
    Hahn, Axel
    Montanari, Daniele
    Reinelt, Matthias
    [J]. ENTERPRISE INTEROPERABILITY III: NEW CHALLENGES AND INDUSTRIAL APPROACHES, 2008, : 329 - +
  • [10] Ontology-driven map generalization
    Kulik, L
    Duckham, M
    Egenhofer, M
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2005, 16 (03): : 245 - 267