DYNAMICS OF THE SMOOTH POSITON OF A DERIVATIVE NONLINEAR SCHRODINGER EQUATION

被引:0
|
作者
Dong, Xiaona [1 ]
Li, Maohua [1 ]
Hu, Aijuan [1 ]
Chen, Caifeng [1 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
来源
ROMANIAN JOURNAL OF PHYSICS | 2022年 / 67卷 / 9-10期
关键词
Chen-Lee-Liu derivative nonlinear Schrodinger equation; Positon solution; Degenerate Darboux transformation; Trajectory; Phase shift; WAVES; KDV; GENERATION; MODULATION; PARALLEL;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The mixed Chen-Lee-Liu derivative nonlinear Schrodinger equation (CLL-NLS) is studied in this paper. From the zero seed solution, the determinant expression of the n-soliton solution of the CLL-NLS equation is obtained, and the positon solution is constructed by means of the degenerate Darboux transform. Furthermore, the modular square of the positon solution is decomposed to obtain the approximate trajectory and "phase shift", and then its dynamic properties are studied. The mixed solutions of positon and soliton are also derived, and their dynamic evolution diagrams are studied.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] An integrable decomposition of the derivative nonlinear Schrodinger equation
    Zhou Ru-Guang
    [J]. CHINESE PHYSICS LETTERS, 2007, 24 (03) : 589 - 591
  • [32] The truncation model of the derivative nonlinear Schrodinger equation
    Sanchez-Arriaga, G.
    Hada, T.
    Nariyuki, Y.
    [J]. PHYSICS OF PLASMAS, 2009, 16 (04)
  • [33] Hs bounds for the derivative nonlinear Schrodinger equation
    Bahouri, Hajer
    Leslie, Trevor M.
    Perelman, Galina
    [J]. MATHEMATICAL RESEARCH LETTERS, 2023, 30 (05)
  • [34] A Priori Estimates for the Derivative Nonlinear Schrodinger Equation
    Klaus, Friedrich
    Schippa, Robert
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2022, 65 (03): : 329 - 346
  • [35] Solitary waves for nonlinear Schrodinger equation with derivative
    Miao, Changxing
    Tang, Xingdong
    Xu, Guixiang
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)
  • [36] On Darboux transformations for the derivative nonlinear Schrodinger equation
    Nimmo, Jonathan J. C.
    Yilmaz, Halis
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (02) : 278 - 293
  • [37] Soliton Resolution for the Derivative Nonlinear Schrodinger Equation
    Jenkins, Robert
    Liu, Jiaqi
    Perry, Peter
    Sulem, Catherine
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 363 (03) : 1003 - 1049
  • [38] DEFORMED SOLITON AND POSITON SOLUTIONS FOR THE (2+1)-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION
    Yuan, Feng
    [J]. ROMANIAN REPORTS IN PHYSICS, 2022, 74 (04)
  • [39] Nonlinear Schrodinger equation and DNA dynamics
    Zdravkovic, Slobodan
    Sataric, Miljko V.
    [J]. PHYSICS LETTERS A, 2008, 373 (01) : 126 - 132
  • [40] On the Dynamics of Solitons in the Nonlinear Schrodinger Equation
    Benci, Vieri
    Ghimenti, Marco
    Micheletti, Anna Maria
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) : 467 - 492