Hs bounds for the derivative nonlinear Schrodinger equation

被引:0
|
作者
Bahouri, Hajer [1 ,2 ]
Leslie, Trevor M. [3 ]
Perelman, Galina [4 ]
机构
[1] CNRS, Lab Jacques Louis Lions LJLL, Pl Jussieu, F-75005 Paris, France
[2] Sorbonne Univ, Pl Jussieu, F-75005 Paris, France
[3] IIT, 10 W 32 St, Chicago, IL 60616 USA
[4] Univ Paris Est Creteil, Lab Anal & Math Appl, F-94010 Creteil, France
关键词
GLOBAL WELL-POSEDNESS; EXISTENCE; NLS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Marchenko equation for the derivative nonlinear Schrodinger equation
    Huang Nian-Ning
    [J]. CHINESE PHYSICS LETTERS, 2007, 24 (04) : 894 - 897
  • [2] THE STOCHASTIC DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Zhong, Sijia
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2017, 30 (1-2) : 81 - 100
  • [3] ON THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION
    HAYASHI, N
    OZAWA, T
    [J]. PHYSICA D, 1992, 55 (1-2): : 14 - 36
  • [4] Continuous Dependence for Nonlinear Schrodinger Equation in Hs
    Uchizono, Harunori
    Wada, Takeshi
    [J]. JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2012, 19 (01): : 57 - 68
  • [5] Direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation and the modified nonlinear Schrodinger equation
    Chen, XJ
    Yang, JK
    [J]. PHYSICAL REVIEW E, 2002, 65 (06):
  • [6] Complex excitations for the derivative nonlinear Schrodinger equation
    Zhou, Huijuan
    Chen, Yong
    Tang, Xiaoyan
    Li, Yuqi
    [J]. NONLINEAR DYNAMICS, 2022, 109 (03) : 1947 - 1967
  • [7] Strange tori of the derivative nonlinear Schrodinger equation
    Li, Y. Charles
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2007, 80 (01) : 83 - 99
  • [8] The derivative nonlinear Schrodinger equation on the half line
    Erdogan, M. B.
    Gurel, T. B.
    Tzirakis, N.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (07): : 1947 - 1973
  • [9] Weak solutions for the derivative nonlinear Schrodinger equation
    Rial, DF
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (02) : 149 - 158
  • [10] Hamiltonian formalism of the derivative nonlinear Schrodinger equation
    Cai, H
    Liu, FM
    Huang, NN
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 39 (02) : 181 - 188