Marchenko equation for the derivative nonlinear Schrodinger equation

被引:0
|
作者
Huang Nian-Ning [1 ]
机构
[1] Wuhan Univ, Dept Phys, Wuhan 430072, Peoples R China
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simple derivation of the Marchenko equation is given for the derivative nonlinear Schrodinger equation. The kernel of the Marchenko equation is demanded to satisfy the conditions given by compatibility equations. The soliton solutions to the Marchenko equation are verified. The derivation is not concerned with the revisions of Kaup and Newell.
引用
下载
收藏
页码:894 / 897
页数:4
相关论文
共 50 条
  • [1] Asymptotic analysis of the Marchenko integral equation and soliton asymptotics of a solution of the nonlinear Schrodinger equation
    Kotlyarov, V.P.
    Physica D: Nonlinear Phenomena, 1995, 87 (1-4):
  • [2] ON THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION
    HAYASHI, N
    OZAWA, T
    PHYSICA D, 1992, 55 (1-2): : 14 - 36
  • [3] THE STOCHASTIC DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Zhong, Sijia
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2017, 30 (1-2) : 81 - 100
  • [4] Direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation and the modified nonlinear Schrodinger equation
    Chen, XJ
    Yang, JK
    PHYSICAL REVIEW E, 2002, 65 (06):
  • [5] Complex excitations for the derivative nonlinear Schrodinger equation
    Zhou, Huijuan
    Chen, Yong
    Tang, Xiaoyan
    Li, Yuqi
    NONLINEAR DYNAMICS, 2022, 109 (03) : 1947 - 1967
  • [6] The derivative nonlinear Schrodinger equation in analytic classes
    Gurjic, Z
    Kalisch, H
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2003, 10 : 62 - 71
  • [7] Hamiltonian formalism of the derivative nonlinear Schrodinger equation
    Cai, H
    Liu, FM
    Huang, NN
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 39 (02) : 181 - 188
  • [8] The derivative nonlinear Schrodinger equation on the half line
    Erdogan, M. B.
    Gurel, T. B.
    Tzirakis, N.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (07): : 1947 - 1973
  • [9] Weak solutions for the derivative nonlinear Schrodinger equation
    Rial, DF
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (02) : 149 - 158
  • [10] Chirped solitons in derivative nonlinear Schrodinger equation
    Justin, Mibaile
    Hubert, Malwe Boudoue
    Betchewe, Gambo
    Doka, Serge Yamigno
    Crepin, Kofane Timoleon
    CHAOS SOLITONS & FRACTALS, 2018, 107 : 49 - 54