Marchenko equation for the derivative nonlinear Schrodinger equation

被引:0
|
作者
Huang Nian-Ning [1 ]
机构
[1] Wuhan Univ, Dept Phys, Wuhan 430072, Peoples R China
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simple derivation of the Marchenko equation is given for the derivative nonlinear Schrodinger equation. The kernel of the Marchenko equation is demanded to satisfy the conditions given by compatibility equations. The soliton solutions to the Marchenko equation are verified. The derivation is not concerned with the revisions of Kaup and Newell.
引用
下载
收藏
页码:894 / 897
页数:4
相关论文
共 50 条
  • [31] The Calogero-Moser derivative nonlinear Schrodinger equation
    Gerard, Patrick
    Lenzmann, Enno
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (10) : 4008 - 4062
  • [32] Exponential stability estimate for the derivative nonlinear Schrodinger equation*
    Cong, Hongzi
    Mi, Lufang
    Wu, Xiaoqing
    Zhang, Qidi
    NONLINEARITY, 2022, 35 (05) : 2385 - 2423
  • [33] Invariant measures for the periodic derivative nonlinear Schrodinger equation
    Genovese, Giuseppe
    Luca, Renato
    Valeri, Daniele
    MATHEMATISCHE ANNALEN, 2019, 374 (3-4) : 1075 - 1138
  • [34] Modified scattering for the derivative fractional nonlinear Schrodinger equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (02)
  • [35] Stability of solitary waves for derivative nonlinear Schrodinger equation
    Colin, Mathieu
    Ohta, Masahito
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 753 - 764
  • [36] DYNAMICS OF THE SMOOTH POSITON OF A DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Dong, Xiaona
    Li, Maohua
    Hu, Aijuan
    Chen, Caifeng
    ROMANIAN JOURNAL OF PHYSICS, 2022, 67 (9-10):
  • [37] Solution and integrability of a generalized derivative nonlinear Schrodinger equation
    Kondo, K
    Kajiwara, K
    Matsui, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (01) : 60 - 66
  • [38] Direct perturbation method for derivative nonlinear Schrodinger equation
    Cheng Xue-Ping
    Lin Ji
    Han Ping
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (02) : 501 - 504
  • [39] The algebraic structure behind the derivative nonlinear Schrodinger equation
    Franca, G. S.
    Gomes, J. F.
    Zimerman, A. H.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (30)
  • [40] Next hierarchy of mixed derivative nonlinear Schrodinger equation
    Porsezian, K
    Seenuvasakumaran, P
    Saravanan, K
    CHAOS SOLITONS & FRACTALS, 2000, 11 (14) : 2223 - 2231