Nonseparable stationary anisotropic space-time covariance functions

被引:67
|
作者
Porcu, E. [1 ]
Gregori, P. [1 ]
Mateu, J. [1 ]
机构
[1] Univ Jaume 1, Dept Math, Castellon de La Plana 12071, Spain
关键词
bivariate Laplace transform; completely monotone functions; full symmetry; nonseparability; space-time covariance functions; anisotropy;
D O I
10.1007/s00477-006-0048-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Obtaining new and flexible classes of nonseparable spatio-temporal covariances and variograms has resulted a key point of research in the last years. The goal of this paper is to introduce and develop new spatio-temporal covariance models taking into account the problem of spatial anisotropy. Recent literature has focused on the problem of full symmetry and the problem of anisotropy has been overcome. Here we propose a generalization of Gneiting's (J Am Stat Assoc 97:590-600, 2002a) approach and obtain new classes of stationary nonseparable spatio-temporal covariance functions which are spatially anisotropic. The resulting structures are proved to have certain interesting mathematical properties, together with a considerable applicability.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [1] Nonseparable stationary anisotropic space–time covariance functions
    E. Porcu
    P. Gregori
    J. Mateu
    [J]. Stochastic Environmental Research and Risk Assessment, 2006, 21 : 113 - 122
  • [2] Nonseparable, stationary covariance functions for space-time data
    Gneiting, T
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) : 590 - 600
  • [3] Stationary nonseparable space-time covariance functions on networks
    Porcu, Emilio
    White, Philip A.
    Genton, Marc G.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024, 85 (05) : 1417 - 1440
  • [4] NONSEPARABLE, SPACE-TIME COVARIANCE FUNCTIONS WITH DYNAMICAL COMPACT SUPPORTS
    Porcu, Emilio
    Bevilacqua, Moreno
    Genton, Marc G.
    [J]. STATISTICA SINICA, 2020, 30 (02) : 719 - 739
  • [5] Fully nonseparable Gneiting covariance functions for multivariate space-time data
    Allard, Denis
    Clarotto, Lucia
    Emery, Xavier
    [J]. SPATIAL STATISTICS, 2022, 52
  • [6] A general class of nonseparable space-time covariance models
    Fonseca, Thais C. O.
    Steel, Mark F. J.
    [J]. ENVIRONMETRICS, 2011, 22 (02) : 224 - 242
  • [7] Simulating space-time random fields with nonseparable Gneiting-type covariance functions
    Denis Allard
    Xavier Emery
    Céline Lacaux
    Christian Lantuéjoul
    [J]. Statistics and Computing, 2020, 30 : 1479 - 1495
  • [8] Simulating space-time random fields with nonseparable Gneiting-type covariance functions
    Allard, Denis
    Emery, Xavier
    Lacaux, Celine
    Lantuejoul, Christian
    [J]. STATISTICS AND COMPUTING, 2020, 30 (05) : 1479 - 1495
  • [9] Space-time covariance functions
    Stein, ML
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) : 310 - 321
  • [10] Mortality risk assessment through stationary space-time covariance functions
    Martinez-Ruiz, F.
    Mateu, J.
    Montes, F.
    Porcu, E.
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2010, 24 (04) : 519 - 526