Stationary nonseparable space-time covariance functions on networks

被引:0
|
作者
Porcu, Emilio [1 ]
White, Philip A. [2 ,3 ]
Genton, Marc G. [4 ,5 ]
机构
[1] Khalifa Univ, Dept Math, Abu Dhabi, U Arab Emirates
[2] Berry Consultants, Austin, TX USA
[3] Brigham Young Univ, Dept Stat, Provo, UT USA
[4] King Abdullah Univ Sci & Technol, Stat Program, Thuwal, Saudi Arabia
[5] King Abdullah Univ Sci & Technol, Stat Program, Thuwal 239556900, Saudi Arabia
关键词
circular time; covariance function; dynamical support; generalised network; linear time; spatio-temporal statistics; SPATIAL STATISTICAL-MODELS; GAUSSIAN FIELDS; POINT PATTERNS; SCORING RULES; PREDICTION; ACCIDENTS; DISTANCE; NONSTATIONARY; ALGORITHMS; CRITERIA;
D O I
10.1093/jrsssb/qkad082
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The advent of data science has provided an increasing number of challenges with high data complexity. This paper addresses the challenge of space-time data where the spatial domain is not a planar surface, a sphere, or a linear network, but a generalised network (termed a graph with Euclidean edges). Additionally, data are repeatedly measured over different temporal instants. We provide new classes of stationary nonseparable space-time covariance functions where space can be a generalised network, a Euclidean tree, or a linear network, and where time can be linear or circular (seasonal). Because the construction principles are technical, we focus on illustrations that guide the reader through the construction of statistically interpretable examples. A simulation study demonstrates that the correct model can be recovered when compared to misspecified models. In addition, our simulation studies show that we effectively recover simulation parameters. In our data analysis, we consider a traffic accident dataset that shows improved model performance based on covariance specifications and network-based metrics.
引用
收藏
页码:1417 / 1440
页数:24
相关论文
共 50 条
  • [1] Nonseparable, stationary covariance functions for space-time data
    Gneiting, T
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) : 590 - 600
  • [2] Nonseparable stationary anisotropic space-time covariance functions
    Porcu, E.
    Gregori, P.
    Mateu, J.
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2006, 21 (02) : 113 - 122
  • [3] Nonseparable stationary anisotropic space–time covariance functions
    E. Porcu
    P. Gregori
    J. Mateu
    [J]. Stochastic Environmental Research and Risk Assessment, 2006, 21 : 113 - 122
  • [4] NONSEPARABLE, SPACE-TIME COVARIANCE FUNCTIONS WITH DYNAMICAL COMPACT SUPPORTS
    Porcu, Emilio
    Bevilacqua, Moreno
    Genton, Marc G.
    [J]. STATISTICA SINICA, 2020, 30 (02) : 719 - 739
  • [5] Fully nonseparable Gneiting covariance functions for multivariate space-time data
    Allard, Denis
    Clarotto, Lucia
    Emery, Xavier
    [J]. SPATIAL STATISTICS, 2022, 52
  • [6] A general class of nonseparable space-time covariance models
    Fonseca, Thais C. O.
    Steel, Mark F. J.
    [J]. ENVIRONMETRICS, 2011, 22 (02) : 224 - 242
  • [7] Simulating space-time random fields with nonseparable Gneiting-type covariance functions
    Denis Allard
    Xavier Emery
    Céline Lacaux
    Christian Lantuéjoul
    [J]. Statistics and Computing, 2020, 30 : 1479 - 1495
  • [8] Simulating space-time random fields with nonseparable Gneiting-type covariance functions
    Allard, Denis
    Emery, Xavier
    Lacaux, Celine
    Lantuejoul, Christian
    [J]. STATISTICS AND COMPUTING, 2020, 30 (05) : 1479 - 1495
  • [9] Space-time covariance functions
    Stein, ML
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) : 310 - 321
  • [10] Mortality risk assessment through stationary space-time covariance functions
    Martinez-Ruiz, F.
    Mateu, J.
    Montes, F.
    Porcu, E.
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2010, 24 (04) : 519 - 526