Fully nonseparable Gneiting covariance functions for multivariate space-time data

被引:8
|
作者
Allard, Denis [1 ]
Clarotto, Lucia [2 ]
Emery, Xavier [3 ,4 ]
机构
[1] INRAE, Biostat & Spatial Proc BioSP, F-84914 Avignon, France
[2] PSL Univ, Ctr Geosci & Geoengn, Mines Paris, F-77300 Fontainebleau, France
[3] Univ Chile, Dept Min Engn, Ave Beauchef 850, Santiago 8370448, Chile
[4] Univ Chile, Adv Min Technol Ctr, Ave Beauchef 850, Santiago 8370448, Chile
关键词
Spatio-temporal modeling; Matrix-valued covariance function; Pseudo-variogram; Matern covariance; Spectral simulation; RANDOM-FIELDS; EXACT SIMULATION; MODEL; FRAMEWORK;
D O I
10.1016/j.spasta.2022.100706
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We broaden the well-known Gneiting class of space-time covariance functions by introducing a very general parametric class of fully nonseparable direct and cross-covariance functions for multivariate random fields, where each component has a spatial covariance function from the Matern family with its own smoothness and scale parameters and, unlike most of currently available models, its own correlation function in time. We present sufficient conditions that result in valid models with varying degrees of complexity and we discuss the parameterization of those. Continuous-in-space and discrete-in-time simulation algorithms are also given, which are not limited by the number of target spatial coordinates and allow tens of thousands of time coordinates. The application of the proposed model is illustrated on a weather trivariate dataset over France. Our new model yields better fitting and better predictive scores in time compared to a more parsimonious model with a common temporal correlation function. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Simulating space-time random fields with nonseparable Gneiting-type covariance functions
    Allard, Denis
    Emery, Xavier
    Lacaux, Celine
    Lantuejoul, Christian
    [J]. STATISTICS AND COMPUTING, 2020, 30 (05) : 1479 - 1495
  • [2] Simulating space-time random fields with nonseparable Gneiting-type covariance functions
    Denis Allard
    Xavier Emery
    Céline Lacaux
    Christian Lantuéjoul
    [J]. Statistics and Computing, 2020, 30 : 1479 - 1495
  • [3] Nonseparable, stationary covariance functions for space-time data
    Gneiting, T
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) : 590 - 600
  • [4] Stationary nonseparable space-time covariance functions on networks
    Porcu, Emilio
    White, Philip A.
    Genton, Marc G.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024, 85 (05) : 1417 - 1440
  • [5] Nonseparable stationary anisotropic space-time covariance functions
    Porcu, E.
    Gregori, P.
    Mateu, J.
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2006, 21 (02) : 113 - 122
  • [6] NONSEPARABLE, SPACE-TIME COVARIANCE FUNCTIONS WITH DYNAMICAL COMPACT SUPPORTS
    Porcu, Emilio
    Bevilacqua, Moreno
    Genton, Marc G.
    [J]. STATISTICA SINICA, 2020, 30 (02) : 719 - 739
  • [7] A general class of nonseparable space-time covariance models
    Fonseca, Thais C. O.
    Steel, Mark F. J.
    [J]. ENVIRONMETRICS, 2011, 22 (02) : 224 - 242
  • [8] Space-time covariance functions
    Stein, ML
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) : 310 - 321
  • [9] Nonseparable stationary anisotropic space–time covariance functions
    E. Porcu
    P. Gregori
    J. Mateu
    [J]. Stochastic Environmental Research and Risk Assessment, 2006, 21 : 113 - 122
  • [10] Nonseparable space-time covariance models: Some parametric families
    De Iaco, S
    Myers, DE
    Posa, D
    [J]. MATHEMATICAL GEOLOGY, 2002, 34 (01): : 23 - 42