Diffusion-based microfluidic PCR for "one-pot" analysis of cells

被引:17
|
作者
Ma, Sai [1 ]
Loufakis, Despina Nelie [2 ]
Cao, Zhenning [1 ]
Chang, Yiwen [2 ]
Achenie, Luke E. K. [2 ]
Lu, Chang [2 ]
机构
[1] Virginia Tech, Sch Biomed Engn & Sci, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Chem Engn, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
POLYMERASE-CHAIN-REACTION; DIGITAL PCR; DNA; AMPLIFICATION; DEPENDENCE; TEMPLATES; CYTOPLASM; SAMPLES; DEVICE; WATER;
D O I
10.1039/c4lc00498a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genetic analysis starting with cell samples often requires multi-step processing including cell lysis, DNA isolation/purification, and polymerase chain reaction (PCR) based assays. When conducted on a microfluidic platform, the compatibility among various steps often demands a complicated procedure and a complex device structure. Here we present a microfluidic device that permits a "one-pot" strategy for multi-step PCR analysis starting from cells. Taking advantage of the diffusivity difference, we replace the smaller molecules in the reaction chamber by diffusion while retaining DNA molecules inside. This simple scheme effectively removes reagents from the previous step to avoid interference and thus permits multi-step processing in the same reaction chamber. Our approach shows high efficiency for PCR and potential for a wide range of genetic analysis including assays based on single cells.
引用
收藏
页码:2905 / 2909
页数:5
相关论文
共 50 条
  • [1] Optimal Design of Microfluidic Platforms for Diffusion-Based PCR for "One-Pot" Analysis of Cells
    Crow, Jordan
    Achenie, Luke E. K.
    Lu, Chang
    Ma, Sai
    Loufakis, Despina Nelie
    Cao, Zhenning
    Chang, Yiwen
    [J]. 12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING (PSE) AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT B, 2015, 37 : 1199 - 1204
  • [2] Diffusion-based analysis of molecular interactions in microfluidic devices
    Hatch, A
    Garcia, E
    Yager, P
    [J]. PROCEEDINGS OF THE IEEE, 2004, 92 (01) : 126 - 139
  • [3] Design and Analysis of a Laminar Diffusion-Based Micromixer with Microfluidic Chip
    Ulkir, Osman
    Girit, Oguz
    Ertugrul, Ishak
    [J]. Journal of Nanomaterials, 2021, 2021
  • [4] Design and Analysis of a Laminar Diffusion-Based Micromixer with Microfluidic Chip
    Ulkir, Osman
    Girit, Oguz
    Ertugrul, Ishak
    [J]. JOURNAL OF NANOMATERIALS, 2021, 2021
  • [5] A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis
    Si, Guangwei
    Yang, Wei
    Bi, Shuangyu
    Luo, Chunxiong
    Ouyang, Qi
    [J]. LAB ON A CHIP, 2012, 12 (07) : 1389 - 1394
  • [6] Cultivation of yeast in diffusion-based microfluidic device
    Oliveira, A. F.
    Pelegati, V. B.
    Carvalho, H. F.
    Cesar, C. L.
    Bastos, R. G.
    de la Torre, L. G.
    [J]. BIOCHEMICAL ENGINEERING JOURNAL, 2016, 105 : 288 - 295
  • [7] Microfluidics - Microfluidic diffusion-based separation and detection
    Weigl, BH
    Yager, P
    [J]. SCIENCE, 1999, 283 (5400) : 346 - 347
  • [8] Analysis of raw biofluids by mass spectrometry using microfluidic diffusion-based separation
    Heinemann, Joshua
    Noon, Brigit
    Willems, Daniel
    Budeski, Katherine
    Bothner, Brian
    [J]. ANALYTICAL METHODS, 2017, 9 (03) : 385 - 392
  • [9] One-pot analysis of sulfated glycosaminoglycans
    C. B. Shrikanth
    J. Sanjana
    Nandini D. Chilkunda
    [J]. Glycoconjugate Journal, 2018, 35 : 129 - 137
  • [10] One-pot analysis of sulfated glycosaminoglycans
    Shrikanth, C. B.
    Sanjana, J.
    Chilkunda, Nandini D.
    [J]. GLYCOCONJUGATE JOURNAL, 2018, 35 (01) : 129 - 137