An inverse problem for space-fractional backward diffusion problem

被引:23
|
作者
Zhao, Jingjun [1 ]
Liu, Songshu [1 ]
Liu, Tao [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
inverse problems; fractional backward diffusion problem; ill-posed problems; regularization method; DECOMPOSITION METHOD; ANOMALOUS DIFFUSION; EQUATION;
D O I
10.1002/mma.2876
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an inverse problem for space-fractional backward diffusion equation, which is highly ill-posed, is considered. This problem is obtained from the classical diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order alpha is an element of (0,2]. We show that such a problem is severely ill-posed, and further present a simplified Tikhonov regularization method to deal with this problem. Convergence estimate is presented under a priori choice of regularization parameter. Numerical experiments are given to illustrate the accuracy and efficiency of the proposed method. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:1147 / 1158
页数:12
相关论文
共 50 条
  • [31] INverse Source Problem for a Space-Time Fractional Diffusion Equation
    Muhammad Ali
    Sara Aziz
    Salman A. Malik
    [J]. Fractional Calculus and Applied Analysis, 2018, 21 : 844 - 863
  • [32] Inverse source problem for a space-time fractional diffusion equation
    Mohamed BenSaleh
    Hassine Maatoug
    [J]. Ricerche di Matematica, 2024, 73 : 681 - 713
  • [33] Inverse source problem for a space-time fractional diffusion equation
    BenSaleh, Mohamed
    Maatoug, Hassine
    [J]. RICERCHE DI MATEMATICA, 2024, 73 (02) : 681 - 713
  • [34] INVERSE SOURCE PROBLEM FOR A SPACE-TIME FRACTIONAL DIFFUSION EQUATION
    Ali, Muhammad
    Aziz, Sara
    Malik, Salman A.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (03) : 844 - 863
  • [35] Backward problem for time-space fractional diffusion equations in Hilbert scales
    Dang Duc Trong
    Dinh Nguyen Duy Hai
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 93 : 253 - 264
  • [36] On a Riesz-Feller space fractional backward diffusion problem with a nonlinear source
    Nguyen Huy Tuan
    Dinh Nguyen Duy Hai
    Le Dinh Long
    Van Thinh Nguyen
    Kirane, Mokhtar
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 312 : 103 - 126
  • [37] A backward problem for the time-fractional diffusion equation
    Al-Jamal, Mohammad F.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2466 - 2474
  • [38] Coefficient inverse problem for a fractional diffusion equation
    Miller, Luc
    Yamamoto, Masahiro
    [J]. INVERSE PROBLEMS, 2013, 29 (07)
  • [39] A backward problem for the time-fractional diffusion equation
    Liu, J. J.
    Yamamoto, M.
    [J]. APPLICABLE ANALYSIS, 2010, 89 (11) : 1769 - 1788
  • [40] The Inverse Nodal problem for the fractional diffusion equation
    Bas, Erdal
    [J]. ACTA SCIENTIARUM-TECHNOLOGY, 2015, 37 (02) : 251 - 257