An inverse problem for space-fractional backward diffusion problem

被引:23
|
作者
Zhao, Jingjun [1 ]
Liu, Songshu [1 ]
Liu, Tao [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
inverse problems; fractional backward diffusion problem; ill-posed problems; regularization method; DECOMPOSITION METHOD; ANOMALOUS DIFFUSION; EQUATION;
D O I
10.1002/mma.2876
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an inverse problem for space-fractional backward diffusion equation, which is highly ill-posed, is considered. This problem is obtained from the classical diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order alpha is an element of (0,2]. We show that such a problem is severely ill-posed, and further present a simplified Tikhonov regularization method to deal with this problem. Convergence estimate is presented under a priori choice of regularization parameter. Numerical experiments are given to illustrate the accuracy and efficiency of the proposed method. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:1147 / 1158
页数:12
相关论文
共 50 条
  • [1] Inverse problem for nonlinear backward space-fractional diffusion equation
    Hai Dinh Nguyen Duy
    Tuan Nguyen Huy
    Long Le Dinh
    Gia Quoc Thong Le
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2017, 25 (04): : 423 - 443
  • [2] An Inverse Source Problem of Space-Fractional Diffusion Equation
    Liu, Songshu
    Feng, Lixin
    Zhang, Guilai
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 4405 - 4424
  • [3] An Inverse Source Problem of Space-Fractional Diffusion Equation
    Songshu Liu
    Lixin Feng
    Guilai Zhang
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 4405 - 4424
  • [4] An optimal regularization method for space-fractional backward diffusion problem
    Zhang, Z. Q.
    Wei, T.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2013, 92 : 14 - 27
  • [5] Regularization Technique for an Inverse Space-Fractional Backward Heat Conduction Problem
    Milad Karimi
    Fridoun Moradlou
    Mojtaba Hajipour
    [J]. Journal of Scientific Computing, 2020, 83
  • [6] Regularization Technique for an Inverse Space-Fractional Backward Heat Conduction Problem
    Karimi, Milad
    Moradlou, Fridoun
    Hajipour, Mojtaba
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (02)
  • [7] A modified regularized algorithm for a semilinear space-fractional backward diffusion problem
    Jiang, Xiaoying
    Xu, Dinghua
    Zhang, Qifeng
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (16) : 5996 - 6006
  • [8] A regularization for a Riesz-Feller space-fractional backward diffusion problem
    Cheng, Hao
    Fu, Chu-Li
    Zheng, Guang-Hui
    Gao, Jie
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2014, 22 (06) : 860 - 872
  • [9] Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method
    Zheng, Guang-Hui
    Zhang, Quan-Guo
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 148 : 37 - 47
  • [10] The method of fundamental solution for the inverse source problem for the space-fractional diffusion equation
    Wen, Jin
    Cheng, Jun-Feng
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2018, 26 (07) : 925 - 941