A modified regularized algorithm for a semilinear space-fractional backward diffusion problem

被引:1
|
作者
Jiang, Xiaoying [1 ]
Xu, Dinghua [1 ,2 ]
Zhang, Qifeng [1 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Math, Coll Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
backward diffusion problem; space-fractional equations; modified regularization; variational adjoint method; INVERSE PROBLEM; HEAT;
D O I
10.1002/mma.4449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a backward problem for a space-fractional partial differential equation. The main purpose is to propose a modified regularization method for the inverse problem. The existence and the uniqueness for the modified regularized solution are proved. To derive the gradient of the optimization functional, the variational adjoint method is introduced, and hence, the unknown initial value is reconstructed. Finally, numerical examples are provided to show the effectiveness of the proposed algorithm. Copyright (C) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:5996 / 6006
页数:11
相关论文
共 50 条
  • [1] An inverse problem for space-fractional backward diffusion problem
    Zhao, Jingjun
    Liu, Songshu
    Liu, Tao
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (08) : 1147 - 1158
  • [2] Optimal error bound and modified kernel method for a space-fractional backward diffusion problem
    Songshu Liu
    Lixin Feng
    [J]. Advances in Difference Equations, 2018
  • [3] Optimal error bound and modified kernel method for a space-fractional backward diffusion problem
    Liu, Songshu
    Feng, Lixin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [4] Inverse problem for nonlinear backward space-fractional diffusion equation
    Hai Dinh Nguyen Duy
    Tuan Nguyen Huy
    Long Le Dinh
    Gia Quoc Thong Le
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2017, 25 (04): : 423 - 443
  • [5] An optimal regularization method for space-fractional backward diffusion problem
    Zhang, Z. Q.
    Wei, T.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2013, 92 : 14 - 27
  • [6] A regularization for a Riesz-Feller space-fractional backward diffusion problem
    Cheng, Hao
    Fu, Chu-Li
    Zheng, Guang-Hui
    Gao, Jie
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2014, 22 (06) : 860 - 872
  • [7] Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method
    Zheng, Guang-Hui
    Zhang, Quan-Guo
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 148 : 37 - 47
  • [8] Solving the Riesz–Feller space-fractional backward diffusion problem by a generalized Tikhonov method
    Hongwu Zhang
    Xiaoju Zhang
    [J]. Advances in Difference Equations, 2020
  • [9] Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem
    Zheng, G. H.
    Wei, T.
    [J]. INVERSE PROBLEMS, 2010, 26 (11)
  • [10] The Simplified Tikhonov Regularization Method for Solving a Riesz–Feller Space-Fractional Backward Diffusion Problem
    Yang F.
    Li X.-X.
    Li D.-G.
    Wang L.
    [J]. Mathematics in Computer Science, 2017, 11 (1) : 91 - 110