Asymptotic stability of solitary wave solutions to the regularized long-wave equation

被引:20
|
作者
Mizumachi, T [1 ]
机构
[1] Yokohama City Univ, Dept Math Sci, Yokohama, Kanagawa 2360027, Japan
关键词
asymptotic stability; RLW; solitary waves;
D O I
10.1016/j.jde.2004.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic stability of solitary wave solutions to the regularized long-wave equation (RLW) in H-1 (R). RLW is an equation which describes the long waves in water. To prove the result, we make use of the monotonicity of the local H-1-norm and apply the Liouville property of (RLW) as in Merle and Martel (J. Math. Pures Appl. 79 (2000) 339; Arch. Rational Mech. Anal. 157 (2001) 219). (C) 2004 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:312 / 341
页数:30
相关论文
共 50 条
  • [41] REGULARIZED LONG-WAVE EQUATION AND INVERSE SCATTERING TRANSFORM
    YAN, CT
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (06) : 2618 - 2630
  • [42] An inverse scattering scheme for the regularized long-wave equation
    Dye, JM
    Parker, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 2889 - 2904
  • [43] Solitary waves for power-law regularized long-wave equation and R(m,n) equation
    Anjan Biswas
    Nonlinear Dynamics, 2010, 59 : 423 - 426
  • [44] Travelling Wave Solutions of the General Regularized Long Wave Equation
    Hang Zheng
    Yonghui Xia
    Yuzhen Bai
    Luoyi Wu
    Qualitative Theory of Dynamical Systems, 2021, 20
  • [45] Travelling Wave Solutions of the General Regularized Long Wave Equation
    Zheng, Hang
    Xia, Yonghui
    Bai, Yuzhen
    Wu, Luoyi
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (01)
  • [46] EXISTENCE, UNIQUENESS, AND ANALYTICITY OF SPACE-PERIODIC SOLUTIONS TO THE REGULARIZED LONG-WAVE EQUATION
    Chertovskih, R.
    Chian, A. C. -L.
    Podvigina, O.
    Rempel, E. L.
    Zheligovsky, V.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2014, 19 (7-8) : 725 - 754
  • [47] Wave Propagation and Stability Analysis for Ostrovsky and Symmetric Regularized Long-Wave Equations
    Kaplan, Melike
    Alqahtani, Rubayyi T.
    Alharthi, Nadiyah Hussain
    MATHEMATICS, 2023, 11 (19)
  • [48] WELL-POSEDNESS FOR THE REGULARIZED INTERMEDIATE LONG-WAVE EQUATION
    Schoeffel, Janaina
    de Zarate, Ailin Ruiz
    Oquendo, Higidio Portillo
    Alfaro Vigo, Daniel G.
    Niche, Cesar J.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (02) : 523 - 535
  • [49] A multisymplectic explicit scheme for the modified regularized long-wave equation
    Cai, Jiaxiang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (03) : 899 - 905
  • [50] Spatiotemporal intermittency and chaotic saddles in the regularized long-wave equation
    Rempel, Erico L.
    Miranda, Rodrigo A.
    Chian, Abraham C. -L.
    PHYSICS OF FLUIDS, 2009, 21 (07)