Travelling Wave Solutions of the General Regularized Long Wave Equation

被引:0
|
作者
Hang Zheng
Yonghui Xia
Yuzhen Bai
Luoyi Wu
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Wuyi University,Department of Mathematics and Computer
[3] Qufu Normal University,School of Mathematical Sciences
关键词
GRLW equation; Exact solutions; Bifurcation; Dynamical system;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases: p=2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2n+1$$\end{document} and p=2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2n$$\end{document} respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when p=2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2n+1$$\end{document}, while it’s not for p=2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2n$$\end{document}.
引用
收藏
相关论文
共 50 条