Travelling Wave Solutions of the General Regularized Long Wave Equation

被引:0
|
作者
Hang Zheng
Yonghui Xia
Yuzhen Bai
Luoyi Wu
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Wuyi University,Department of Mathematics and Computer
[3] Qufu Normal University,School of Mathematical Sciences
关键词
GRLW equation; Exact solutions; Bifurcation; Dynamical system;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases: p=2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2n+1$$\end{document} and p=2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2n$$\end{document} respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when p=2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2n+1$$\end{document}, while it’s not for p=2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2n$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] EXACT TRAVELLING WAVE SOLUTIONS OF A BEAM EQUATION
    Camacho, J. C.
    Bruzon, M. S.
    Ramirez, J.
    Gandarias, M. L.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2011, 18 : 33 - 49
  • [32] Explicit travelling wave solutions to a nonlinear equation
    Zheng, Yun
    Zhang, Hongqing
    He Jishu/Nuclear Techniques, 2000, 23 (02): : 389 - 391
  • [33] Travelling wave solutions of generalized PC equation
    Liu, Zheng-Rong
    Song, Ming
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 1530 - 1533
  • [34] EXACT TRAVELLING WAVE SOLUTIONS TO BBM EQUATION
    Zhu Li Jingen Yang College of Math and Information Science Xinyang Normal University Xinyang Henan Jirong Shan Education Bureau of Sishui Sishui Shandong
    Annals of Differential Equations, 2009, 25 (04) : 414 - 419
  • [35] New travelling wave solutions for the Fisher-KPP equation with general exponents
    Sánchez-Valdés, A
    Hernández-Bermejo, B
    APPLIED MATHEMATICS LETTERS, 2005, 18 (11) : 1281 - 1285
  • [36] Travelling wave solutions for generalized symmetric regularized long-wave equations with high-order nonlinear terms
    Chen, Y
    Li, B
    CHINESE PHYSICS, 2004, 13 (03): : 302 - 306
  • [37] Travelling wave solutions and simulation of the Lonngren wave equation for tunnel diode
    Serbay Duran
    Optical and Quantum Electronics, 2021, 53
  • [38] Travelling wave solutions for a second order wave equation of KdV type
    龙瑶
    李继彬
    芮伟国
    何斌
    Applied Mathematics and Mechanics(English Edition), 2007, (11) : 1455 - 1465
  • [39] Exact travelling wave solutions for the generalized shallow water wave equation
    Elwakil, SA
    El-labany, SK
    Zahran, MA
    Sabry, R
    CHAOS SOLITONS & FRACTALS, 2003, 17 (01) : 121 - 126
  • [40] New exact travelling wave solutions to hirota equation and (1+1)-dimensional dispersive long wave equation
    Wang, Q
    Chen, Y
    Li, B
    Zhang, HQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (06) : 821 - 828