ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production

被引:35
|
作者
Gu, Chunkai [1 ,2 ]
Wang, Genyu [1 ]
Mai, Shuai [1 ]
Wu, Pengfei [1 ]
Wu, Jianrong [2 ]
Wang, Gehua [1 ]
Liu, Hongjuan [1 ]
Zhang, Jianan [1 ]
机构
[1] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[2] Jiangnan Univ, Sch Biotechnol, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Butanol fermentation; Symbiotic system; TSH06; TS4-30; Genome shuffling; Real-time RT-PCR; ACETOBUTYLICUM ATCC 824; CLOSTRIDIUM-ACETOBUTYLICUM; SOLVENT PRODUCTION; TRANSCRIPTION MACHINERY; TOLERANCE; ETHANOL; ACETONE; MUTANT; GENE; INACTIVATION;
D O I
10.1007/s00253-017-8093-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Butanol is an ideal renewable biofuel which possesses superior fuel properties. Previously, butanol-producing symbiotic system TSH06 was isolated in our lab, with microoxygen tolerance ability. To boost butanol yield for large-scale industrial production, TSH06 was used as parental strain and subjected to atmospheric and room temperature plasma (ARTP) and four rounds of genome shuffling (GS). ARTP mutant and GS strain were co-cultured with facultative anaerobic Bacillus cereus TSH2 to form a symbiotic system with microoxygen tolerance, which was then subjected to fermentation. Relative messenger RNA (mRNA) level of key enzyme gene was measured by real-time PCR. The highest butanol titer of TS4-30 reached 15.63 g/L, which was 34% higher than TSH06 (12.19 g/L). Compared with parental strain, mRNA of acid-forming gene in TS4-30 decreased in acidogenesis phase, while solvent-forming gene increased in solventogenesis phase. This gene expression pattern was consistent with high butanol yield and low acid level in TS4-30. In summary, symbiotic system TS4-30 was obtained with butanol titer improvement and microoxygen tolerance.
引用
收藏
页码:2189 / 2199
页数:11
相关论文
共 50 条
  • [31] Genome shuffling to improve fermentation properties of top-fermenting yeast by the improvement of stress tolerance
    Haiyong Wang
    Lihua Hou
    Food Science and Biotechnology, 2010, 19 : 145 - 150
  • [32] Enhancing Clostridial Acetone-Butanol-Ethanol (ABE) Production and Improving Fuel Properties of ABE-enriched Biodiesel by Extractive Fermentation with Biodiesel
    Li, Qing
    Cai, Hao
    Hao, Bo
    Zhang, Congling
    Yu, Ziniu
    Zhou, Shengde
    Chenjuan, Liu
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2010, 162 (08) : 2381 - 2386
  • [33] Improvement of Bacillus subtilis for poly-γ-glutamic acid production by genome shuffling
    Zeng, Wei
    Chen, Guiguang
    Wu, Hao
    Wang, Jun
    Liu, Yanliao
    Guo, Ye
    Liang, Zhiqun
    MICROBIAL BIOTECHNOLOGY, 2016, 9 (06) : 824 - 833
  • [34] Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process
    Li, Jing
    Chen, Xiangrong
    Qi, Benkun
    Luo, Jianquan
    Zhang, Yuming
    Su, Yi
    Wan, Yinhua
    Bioresource Technology, 2014, 169 : 251 - 257
  • [35] PRODUCTION OF BUTANOL BY CLOSTRIDIUM ACETOBUTYLICUM IN EXTRACTIVE FERMENTATION SYSTEM.
    Ishii, Shigeo
    Taya, Masahito
    Kobayashi, Takeshi
    1600, (18):
  • [36] Integration of acetone-butanol-ethanol (ABE) fermentation process and enzyme catalyzed butyl-butyrate production
    Xin, Fengxue
    He, Jianzhong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [37] Effect of Nutrient Supplementation on Biobutanol Production from Cheese Whey by ABE (Acetone-Butanol-Ethanol) Fermentation
    Diez-Antolinez, Rebeca
    Hijosa-Valsero, Maria
    Paniagua-Garcia, Ana I.
    Gomez, Xiomar
    5TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL BIOTECHNOLOGY (IBIC 2016), 2016, 49 : 217 - 222
  • [38] PRODUCTION OF BUTANOL BY CLOSTRIDIUM-ACETOBUTYLICUM IN EXTRACTIVE FERMENTATION SYSTEM
    ISHII, S
    TAYA, M
    KOBAYASHI, T
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1985, 18 (02) : 125 - 130
  • [39] Continuous acetone-butanol-ethanol (ABE) fermentation and gas production under slight pressure in a membrane bioreactor
    Chen, Chunyan
    Wang, Linyuan
    Xiao, Guoqing
    Liu, Yucheng
    Xiao, Zeyi
    Deng, Qing
    Yao, Peina
    BIORESOURCE TECHNOLOGY, 2014, 163 : 6 - 11
  • [40] Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process
    Li, Jing
    Chen, Xiangrong
    Qi, Benkun
    Luo, Jianquan
    Zhang, Yuming
    Su, Yi
    Wan, Yinhua
    BIORESOURCE TECHNOLOGY, 2014, 169 : 251 - 257