Spreading of partially crystallized oil droplets on an air/water interface

被引:28
|
作者
Hotrum, NE
Stuart, MAC
van Vliet, T
van Aken, GA
机构
[1] Wageningen Ctr Food Sci, NL-6700 AN Wageningen, Netherlands
[2] Univ Wageningen & Res Ctr, Lab Phys Chem & Colloid Sci, NL-6700 EK Wageningen, Netherlands
[3] NIZO Food Res, NL-6710 BA Ede, Netherlands
关键词
surface tension; emulsion; triglycerides; oil spreading; whipping cream;
D O I
10.1016/j.colsurfa.2004.03.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of crystalline fat on the amount and rate of oil spreading out of emulsion droplets onto either a clean or a protein-covered air/water interface was measured for beta-lactoglobulin stabilized emulsions prepared with either anhydrous milk fat or a blend of hydrogenated palm fat and sunflower oil. At a clean interface, liquid oil present in the emulsion droplets was observed to completely spread out of the droplets unimpeded by the presence of a fat crystal network. Further, the presence of a fat crystal network in the emulsion droplets had no effect on the rate of oil spreading out of the droplets. At a protein-covered interface, the spreading behavior of emulsion droplets containing crystalline fat was evaluated in terms of the value of the surface pressure (Pi(AW)) at the point of spreading; Pi(AW) at spreading was unaffected by the presence of crystalline fat. We conclude it is unlikely that the role of crystalline fat in stabilizing aerated emulsions such as whipped cream is to reduce oil spreading at the air/water interface. However, the temperature of the system did have an effect: spontaneous spreading of emulsion droplets at clean air/water interfaces occurred for systems measured at 5 degreesC, but not for those measured at 22 or 37 degreesC. Thus, temperature may play a more important role in the whipping process than commonly thought: the entering and spreading of emulsion droplets was favored at lower temperatures because the surface pressure exerted by protein adsorbed at the air/water interface was reduced. This effect may facilitate the whipping process. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 50 条
  • [41] KINETICS OF SPREADING OF PHOTODAMAGED DOPC LIPOSOMES AT THE AIR-WATER-INTERFACE
    RANEVA, V
    IVANOVA, T
    LAZAROVA, G
    PROUST, J
    PANAIOTOV, I
    COLLOID AND POLYMER SCIENCE, 1995, 273 (02) : 150 - 155
  • [42] Spreading of Oil Droplets Containing Surfactants and Pesticides on Water Surface Based on the Marangoni Effect
    Liu, Jiangyu
    Guo, Xinyu
    Xu, Yong
    Wu, Xuemin
    MOLECULES, 2021, 26 (05):
  • [43] Fatty acid chemistry at the oil-water interface: Self-propelled oil droplets
    Hanczyc, Martin M.
    Toyota, Taro
    Ikegami, Takashi
    Packard, Norman
    Sugawara, Tadashi
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (30) : 9386 - 9391
  • [44] Spreading of oil from protein stabilised emulsions at air/water interfaces
    Schokker, EP
    Bos, MA
    Kuijpers, AJ
    Wijnen, ME
    Walstra, P
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2002, 26 (04) : 315 - 327
  • [45] Oil product spreading on the water surface limitation using air stream
    Pilzis, Kristina
    Vaisis, Vaidotas
    Romagnoli, Francesco
    INTERNATIONAL SCIENTIFIC CONFERENCE - ENVIRONMENTAL AND CLIMATE TECHNOLOGIES (CONECT 2017), 2017, 128 : 345 - 349
  • [46] Behavior of partially fluorinated carboxylic acids at the air-water interface
    Lehmler, HJ
    Oyewumi, MO
    Jay, M
    Bummer, PM
    JOURNAL OF FLUORINE CHEMISTRY, 2001, 107 (01) : 141 - 146
  • [47] Structure of Partially Fluorinated Surfactant Monolayers at the Air-Water Interface
    Jackson, A. J.
    Li, P. X.
    Dong, C. C.
    Thomas, R. K.
    Penfold, J.
    LANGMUIR, 2009, 25 (07) : 3957 - 3965
  • [48] Adsorption and photochemical reactions of PAHs at the air-water interface of fog droplets
    Valsaraj, Kalliat T.
    Chen, Jing
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233 : 361 - 361
  • [49] ELECTRIFIED DROPLETS FROM THE BURSTING OF BUBBLES AT AN AIR-SEA WATER INTERFACE
    BLANCHARD, DC
    NATURE, 1955, 175 (4451) : 334 - 336
  • [50] On the successful encapsulation of water droplets into oil droplets
    Chen, Xiaodong
    Sun, Yingnan
    Xue, Chundong
    Yu, Yude
    Hu, Guoqing
    FRONTIERS IN FLUID MECHANICS RESEARCH, 2015, 126 : 725 - 729