Spreading of partially crystallized oil droplets on an air/water interface

被引:28
|
作者
Hotrum, NE
Stuart, MAC
van Vliet, T
van Aken, GA
机构
[1] Wageningen Ctr Food Sci, NL-6700 AN Wageningen, Netherlands
[2] Univ Wageningen & Res Ctr, Lab Phys Chem & Colloid Sci, NL-6700 EK Wageningen, Netherlands
[3] NIZO Food Res, NL-6710 BA Ede, Netherlands
关键词
surface tension; emulsion; triglycerides; oil spreading; whipping cream;
D O I
10.1016/j.colsurfa.2004.03.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of crystalline fat on the amount and rate of oil spreading out of emulsion droplets onto either a clean or a protein-covered air/water interface was measured for beta-lactoglobulin stabilized emulsions prepared with either anhydrous milk fat or a blend of hydrogenated palm fat and sunflower oil. At a clean interface, liquid oil present in the emulsion droplets was observed to completely spread out of the droplets unimpeded by the presence of a fat crystal network. Further, the presence of a fat crystal network in the emulsion droplets had no effect on the rate of oil spreading out of the droplets. At a protein-covered interface, the spreading behavior of emulsion droplets containing crystalline fat was evaluated in terms of the value of the surface pressure (Pi(AW)) at the point of spreading; Pi(AW) at spreading was unaffected by the presence of crystalline fat. We conclude it is unlikely that the role of crystalline fat in stabilizing aerated emulsions such as whipped cream is to reduce oil spreading at the air/water interface. However, the temperature of the system did have an effect: spontaneous spreading of emulsion droplets at clean air/water interfaces occurred for systems measured at 5 degreesC, but not for those measured at 22 or 37 degreesC. Thus, temperature may play a more important role in the whipping process than commonly thought: the entering and spreading of emulsion droplets was favored at lower temperatures because the surface pressure exerted by protein adsorbed at the air/water interface was reduced. This effect may facilitate the whipping process. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 50 条
  • [1] Flow and fracture phenomena in adsorbed protein layers at the air/water interface in connection with spreading oil droplets
    Hotrum, NE
    Stuart, MAC
    van Vliet, T
    van Aken, GA
    LANGMUIR, 2003, 19 (24) : 10210 - 10216
  • [2] Shear-Induced Instabilities in Oil-in-Water Emulsions Comprising Partially Crystallized Droplets
    Thivilliers-Arvis, Florence
    Laurichesse, Eric
    Schmitt, Veronique
    Leal-Calderon, Fernando
    LANGMUIR, 2010, 26 (22) : 16782 - 16790
  • [3] Monitoring entering and spreading of emulsion droplets at an expanding air/water interface: A novel technique
    Hotrum, NE
    van Vliet, T
    Stuart, MAC
    van Aken, GA
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2002, 247 (01) : 125 - 131
  • [4] Thermally Induced Gelling of Oil-in-Water Emulsions Comprising Partially Crystallized Droplets: The Impact of Interfacial Crystals
    Thivilliers, Florence
    Laurichesse, Eric
    Saadaoui, Hassan
    Leal-Calderon, Fernando
    Schmitt, Veronique
    LANGMUIR, 2008, 24 (23) : 13364 - 13375
  • [5] Gelling of oil-in-water emulsions comprising crystallized droplets
    Giermanska, Joanna
    Thivilliers, Florence
    Backov, Renal
    Schmitt, Veronique
    Drelon, Nicolas
    Leal-Calderon, Fernando
    LANGMUIR, 2007, 23 (09) : 4792 - 4799
  • [6] Oscillating Motion of Oil Droplets in the Emulsion Near the Air- Water Interface
    Kichatov, Boris
    Korshunov, Alexey
    Sudakov, Vladimir
    Gubernov, Vladimir
    Kolobov, Andrey
    Korshunova, Elena
    Kiverin, Alexey
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (36): : 10373 - 10382
  • [7] Entering and spreading of protein-stabilized emulsion droplets at the expanding air-water interface
    Hotrum, NE
    Stuart, MAC
    van Vliet, T
    van Aken, GA
    FOOD COLLOIDS, BIOPOLYMERS AND MATERIALS, 2003, (284): : 192 - 199
  • [8] Spreading of carbosilane dendrimers at the air/water interface
    Sheiko, SS
    Buzin, AI
    Muzafarov, AM
    Rebrov, EA
    Getmanova, EV
    LANGMUIR, 1998, 14 (26) : 7468 - 7474
  • [9] SPREADING OF LIPOSOMES AT AIR-WATER-INTERFACE
    PATTUS, F
    DESNUELLE, P
    VERGER, R
    BIOCHIMICA ET BIOPHYSICA ACTA, 1978, 507 (01) : 62 - 70
  • [10] SPREADING OF BIOMEMBRANES AT AIR-WATER-INTERFACE
    PATTUS, F
    PIOVANT, MCL
    LAZDUNSKI, CJ
    DESNUELLE, P
    VERGER, R
    BIOCHIMICA ET BIOPHYSICA ACTA, 1978, 507 (01) : 71 - 82