Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery

被引:153
|
作者
Sun, Weiwei [1 ]
Liu, Chun [2 ,3 ]
Li, Jialin [1 ]
Lai, Yenming Mark [4 ]
Li, Weiyue [2 ]
机构
[1] Ningbo Univ, Coll Architectural Engn Civil Engn & Environm, Ningbo 315211, Zhejiang, Peoples R China
[2] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
[3] NASMG, Key Lab Adv Engn Survey, Shanghai 200092, Peoples R China
[4] Univ Maryland, College Pk, MD 20742 USA
来源
关键词
anomaly detection; low-rank and sparse matrix decomposition; hyperspectral imagery; low-rank and sparse matrix decomposition detector; TARGET DETECTION; CLASSIFICATION; REDUCTION; ALGORITHM;
D O I
10.1117/1.JRS.8.083641
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A low-rank and sparse matrix decomposition (LRaSMD) detector has been proposed to detect anomalies in hyperspectral imagery (HSI). The detector assumes background images are low-rank while anomalies are gross errors that are sparsely distributed throughout the image scene. By solving a constrained convex optimization problem, the LRaSMD detector separates the anomalies from the background. This protects the background model from corruption. An anomaly value for each pixel is calculated using the Euclidean distance, and anomalies are determined by thresholding the anomaly value. Four groups of experiments on three widely used HSI datasets are designed to completely analyze the performances of the new detector. Experimental results show that the LRaSMD detector outperforms the global Reed-Xiaoli (GRX), the orthogonal subspace projection-GRX, and the cluster-based detectors. Moreover, the results show that LRaSMD achieves equal or better detection performance than the local support vector data description detector within a shorter computational time. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Sparse and low-rank matrix decomposition-based method for hyperspectral anomaly detection
    Kucuk, Fatma
    Toreyin, Behcet Ugur
    Celebi, Fatih Vehbi
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (01):
  • [2] Anomaly Detection in Hyperspectral imagery based on Low-Rank and Sparse Decomposition
    Cui, Xiaoguang
    Tian, Yuan
    Weng, Lubin
    Yang, Yiping
    [J]. FIFTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2013), 2014, 9069
  • [3] A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection
    Zhang, Yuxiang
    Du, Bo
    Zhang, Liangpei
    Wang, Shugen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (03): : 1376 - 1389
  • [4] An Improved Low Rank and Sparse Matrix Decomposition-Based Anomaly Target Detection Algorithm for Hyperspectral Imagery
    Zhang, Yan
    Fan, Yanguo
    Xu, Mingming
    Li, Wei
    Zhang, Guangyu
    Liu, Li
    Yu, Dingfeng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 2663 - 2672
  • [5] Local hyperspectral anomaly detection method based on low-rank and sparse matrix decomposition
    Chang, Hongwei
    Wang, Tao
    Li, Aihua
    Fang, Hao
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (02):
  • [6] LOW-RANK TENSOR DECOMPOSITION BASED ANOMALY DETECTION FOR HYPERSPECTRAL IMAGERY
    Li, Shuangjiang
    Wang, Wei
    Qi, Hairong
    Ayhan, Bulent
    Kwan, Chiman
    Vance, Steven
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4525 - 4529
  • [7] Low-Rank and Sparse Matrix Decomposition with Cluster Weighting for Hyperspectral Anomaly Detection
    Zhu, Lingxiao
    Wen, Gongjian
    Qiu, Shaohua
    [J]. REMOTE SENSING, 2018, 10 (05):
  • [8] Sparse and Low-Rank Matrix Decomposition for Automatic Target Detection in Hyperspectral Imagery
    Bitar, Ahmad W.
    Cheong, Loong-Fah
    Ovarlez, Jean-Philippe
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08): : 5239 - 5251
  • [9] Low-rank and sparse matrix decomposition with background position estimation for hyperspectral anomaly detection
    Yang, Yixin
    Zhang, Jianqi
    Liu, Delian
    Wu, Xin
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2019, 96 : 213 - 227
  • [10] Relaxed Collaborative Representation With Low-Rank and Sparse Matrix Decomposition for Hyperspectral Anomaly Detection
    Su, Hongjun
    Zhang, Huihui
    Wu, Zhaoyue
    Du, Qian
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6826 - 6842