Low-Rank and Sparse Matrix Decomposition with Cluster Weighting for Hyperspectral Anomaly Detection

被引:22
|
作者
Zhu, Lingxiao [1 ]
Wen, Gongjian [1 ]
Qiu, Shaohua [1 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Automat Target Recognit Lab, Changsha 410073, Hunan, Peoples R China
来源
REMOTE SENSING | 2018年 / 10卷 / 05期
基金
中国国家自然科学基金;
关键词
hyperspectral imagery (HSI); anomaly detection; low-rank and sparse matrix decomposition; clustering; IMAGERY; REPRESENTATION; ALGORITHM;
D O I
10.3390/rs10050707
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hyperspectral anomaly detection plays an important role in the field of remote sensing. It provides a way to distinguish interested targets from the background without any prior knowledge. The majority of pixels in the hyperspectral dataset belong to the background, and they can be well represented by several endmembers, so the background has a low-rank property. Anomalous targets usually account for a tiny part of the dataset, and they are considered to have a sparse property. Recently, the low-rank and sparse matrix decomposition (LRaSMD) technique has drawn great attention as a method for solving anomaly detection problems. In this letter, a new anomaly detection method based on LRaSMD and cluster weighting is proposed. We concentrate on the sparse part, which contains most of anomaly information, and calculate the initial anomaly matrix based on this part. To suppress background regions and discriminate anomalies from the background more distinctly, a weighting strategy in terms of the clustering result is used, and then the anomaly matrix is updated. The judgement of anomalies is made according to the responses on the matrix. Our proposed method considers the characteristics of anomalies from the spectral dimension and the spatial distribution simultaneously. Experiments on three hyperspectral datasets demonstrate the outstanding performance of the proposed method.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Sparse and low-rank matrix decomposition-based method for hyperspectral anomaly detection
    Kucuk, Fatma
    Toreyin, Behcet Ugur
    Celebi, Fatih Vehbi
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (01):
  • [2] Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery
    Sun, Weiwei
    Liu, Chun
    Li, Jialin
    Lai, Yenming Mark
    Li, Weiyue
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2014, 8
  • [3] Low-rank and sparse matrix decomposition with background position estimation for hyperspectral anomaly detection
    Yang, Yixin
    Zhang, Jianqi
    Liu, Delian
    Wu, Xin
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2019, 96 : 213 - 227
  • [4] Local hyperspectral anomaly detection method based on low-rank and sparse matrix decomposition
    Chang, Hongwei
    Wang, Tao
    Li, Aihua
    Fang, Hao
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (02)
  • [5] Relaxed Collaborative Representation With Low-Rank and Sparse Matrix Decomposition for Hyperspectral Anomaly Detection
    Su, Hongjun
    Zhang, Huihui
    Wu, Zhaoyue
    Du, Qian
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6826 - 6842
  • [6] Sparse and low-rank matrix decomposition-based method for hyperspectral anomaly detection
    Küçük, Fatma
    Töreyin, Behcet Uur
    Çelebi, Fatih Vehbi
    [J]. Journal of Applied Remote Sensing, 2019, 13 (01):
  • [7] Low-Rank and Sparse Decomposition With Mixture of Gaussian for Hyperspectral Anomaly Detection
    Li, Lu
    Li, Wei
    Du, Qian
    Tao, Ran
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (09) : 4363 - 4372
  • [8] Anomaly Detection in Hyperspectral imagery based on Low-Rank and Sparse Decomposition
    Cui, Xiaoguang
    Tian, Yuan
    Weng, Lubin
    Yang, Yiping
    [J]. FIFTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2013), 2014, 9069
  • [9] Self-Adaptive Low-Rank and Sparse Decomposition for Hyperspectral Anomaly Detection
    Wang, Qunming
    Zeng, Jiang
    Wu, Hao
    Wang, Jiawen
    Sun, Kaipeng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 3672 - 3685
  • [10] A spectral-spatial method based on low-rank and sparse matrix decomposition for hyperspectral anomaly detection
    Zhang, Lili
    Zhao, Chunhui
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (14) : 4047 - 4068