LOW-RANK TENSOR DECOMPOSITION BASED ANOMALY DETECTION FOR HYPERSPECTRAL IMAGERY

被引:0
|
作者
Li, Shuangjiang [1 ]
Wang, Wei [1 ]
Qi, Hairong [1 ]
Ayhan, Bulent [2 ]
Kwan, Chiman [2 ]
Vance, Steven [3 ]
机构
[1] Univ Tennessee, Dept EECS, Knoxville, TN USA
[2] Signal Proc Inc, Rockville, MD USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA USA
关键词
Hyperspectral imaging; anomaly detection; low-rank approximation; tensor decomposition;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Anomaly detection becomes increasingly important in hyper-spectral image analysis, since it can now uncover many material substances which were previously unresolved by multispectral sensors. In this paper, we propose a Low-rank Tensor Decomposition based anomaly Detection (LTDD) algorithm for Hyperspectral Imagery. The HSI data cube is first modeled as a dense low-rank tensor plus a sparse tensor. Based on the obtained low-rank tensor, LTDD further decomposes the low-rank tensor using Tucker decomposition to extract the core tensor which is treated as the "support" of the anomaly spectral signatures. LTDD then adopts an unmixing approach to the reconstructed core tensor for anomaly detection. The experiments based on both simulated and real hyperspectral data sets verify the effectiveness of our algorithm.
引用
收藏
页码:4525 / 4529
页数:5
相关论文
共 50 条
  • [1] Anomaly Detection in Hyperspectral imagery based on Low-Rank and Sparse Decomposition
    Cui, Xiaoguang
    Tian, Yuan
    Weng, Lubin
    Yang, Yiping
    [J]. FIFTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2013), 2014, 9069
  • [2] Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery
    Sun, Weiwei
    Liu, Chun
    Li, Jialin
    Lai, Yenming Mark
    Li, Weiyue
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2014, 8
  • [3] Hyperspectral Anomaly Detection via Tensor- Based Endmember Extraction and Low-Rank Decomposition
    Song, Shangzhen
    Zhou, Huixin
    Gu, Lin
    Yang, Yixin
    Yang, Yiyi
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (10) : 1772 - 1776
  • [4] Hyperspectral Anomaly Detection Based on Adaptive Low-Rank Transformed Tensor
    Sun, Siyu
    Liu, Jun
    Zhang, Ziwei
    Li, Wei
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 9787 - 9799
  • [5] HYPERSPECTRAL ANOMALY DETECTION BASED ON LOW RANK AND SPARSE TENSOR DECOMPOSITION
    Qin, Fuhe
    Wu, Zebin
    Xu, Yang
    Liu, Hongyi
    Zhang, Yan
    Wei, Zhihui
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2240 - 2243
  • [6] HYPER-LAPLACIAN REGULARIZED LOW-RANK TENSOR DECOMPOSITION FOR HYPERSPECTRAL ANOMALY DETECTION
    Ma, Xiaoxiao
    Zhang, Xiangrong
    Huyan, Ning
    Tang, Xu
    Hou, Biao
    Jiao, Licheng
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6380 - 6383
  • [7] LOW-RANK AND SPARSE TENSOR RECOVERY FOR HYPERSPECTRAL ANOMALY DETECTION
    Dai, Jiahui
    Deng, Chenwei
    Wang, Wenzheng
    Liu, Xun
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1141 - 1144
  • [8] Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection
    Wang, Minghua
    Wang, Qiang
    Hong, Danfeng
    Roy, Swalpa Kumar
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 679 - 691
  • [9] Anomaly Detection for Hyperspectral Imagery via Tensor Low-Rank Approximation With Multiple Subspace Learning
    He, Xu
    Wu, Jing
    Ling, Qiang
    Li, Zhaoxu
    Lin, Zaiping
    Zhou, Shilin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [10] Hyperspectral Anomaly Detection with Harmonic Analysis and Low-Rank Decomposition
    Xiang, Pei
    Song, Jiangluqi
    Li, Huan
    Gu, Lin
    Zhou, Huixin
    [J]. REMOTE SENSING, 2019, 11 (24)