A Finite Alternation Result for Reversible Boolean Circuits

被引:0
|
作者
Selinger, Peter [1 ]
机构
[1] Dalhousie Univ, Halifax, NS, Canada
来源
REVERSIBLE COMPUTATION, RC 2016 | 2016年 / 9720卷
关键词
D O I
10.1007/978-3-319-40578-0_20
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We say that a reversible boolean function on n bits has alternation depth d if it can be written as the sequential composition of d reversible boolean functions, each of which acts only on the top n - 1 bits or on the bottom n - 1 bits. We show that every reversible boolean function of n >= 4 bits has alternation depth 9.
引用
收藏
页码:271 / 285
页数:15
相关论文
共 50 条
  • [21] Boolean Difference Technique for Detecting All Missing Gate and Stuck-at Faults in Reversible Circuits
    Mondal, Joyati
    Mondal, Bappaditya
    Kole, Dipak Kumar
    Rahaman, Hafizur
    Das, Debesh Kumar
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2019, 28 (12)
  • [22] Algorithm for Constructing Minimal Representations of Multiple-output Boolean Functions in The Reversible Logic Circuits
    Vinokurov, S. F.
    Ryabets, L.
    Todikov, S. I.
    Frantseva, A. S.
    PROCEEDINGS OF 2017 XX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM), 2017, : 541 - 543
  • [23] On complexity and depth of Boolean circuits for multiplication and inversion over finite fields of characteristic 2
    Gashkov, S. B. u
    Sergeev, S.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2013, 23 (01): : 1 - 37
  • [24] Complexity of Realization of Boolean Functions from Some Classes Related to Finite Grammars by Formulas of Alternation Depth 3
    Lozhkin, S. A.
    Konovadov, V. A.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2014, 69 (03) : 100 - 105
  • [25] Reductions for monotone Boolean circuits
    Iwama, Kazuo
    Morizumi, Hiroki
    Tarui, Jun
    THEORETICAL COMPUTER SCIENCE, 2008, 408 (2-3) : 208 - 212
  • [26] Minimally Unsatisfiable Boolean Circuits
    Belov, Anton
    Marques-Silva, Joao
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2011, 2011, 6695 : 145 - 158
  • [27] Proof nets and Boolean circuits
    Terui, K
    19TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2004, : 182 - 191
  • [28] Reductions for monotone Boolean circuits
    Iwama, Kazuo
    Morizumi, Hiroki
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 540 - 548
  • [29] ON THE COMPLEXITY OF PLANAR BOOLEAN CIRCUITS
    TURAN, G
    COMPUTATIONAL COMPLEXITY, 1995, 5 (01) : 24 - 42
  • [30] EXTENSIONAL UNIFORMITY FOR BOOLEAN CIRCUITS
    Mckenzie, Pierre
    Thomas, Michael
    Vollmer, Heribert
    SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 3186 - 3206