A Finite Alternation Result for Reversible Boolean Circuits

被引:0
|
作者
Selinger, Peter [1 ]
机构
[1] Dalhousie Univ, Halifax, NS, Canada
来源
REVERSIBLE COMPUTATION, RC 2016 | 2016年 / 9720卷
关键词
D O I
10.1007/978-3-319-40578-0_20
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We say that a reversible boolean function on n bits has alternation depth d if it can be written as the sequential composition of d reversible boolean functions, each of which acts only on the top n - 1 bits or on the bottom n - 1 bits. We show that every reversible boolean function of n >= 4 bits has alternation depth 9.
引用
收藏
页码:271 / 285
页数:15
相关论文
共 50 条
  • [11] Non-cancellative Boolean circuits: A generalization of monotone Boolean circuits
    Sengupta, R
    Venkateswaran, H
    THEORETICAL COMPUTER SCIENCE, 2000, 237 (1-2) : 197 - 212
  • [12] Neuromorphic-based Boolean and reversible logic circuits from organic electrochemical transistors
    Perez, Jake C.
    Shaheen, Sean E.
    MRS BULLETIN, 2020, 45 (08) : 649 - 654
  • [13] Boolean Difference Technique for Detecting All Missing Gate Faults in Reversible Circuits.
    Mondal, Joyati
    Mondal, Bappaditya
    Kole, Dipak
    Rahaman, Hafizur
    KDas, Debesh
    2015 IEEE 18TH INTERNATIONAL SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS & SYSTEMS (DDECS 2015), 2015, : 95 - 98
  • [14] Neuromorphic-based Boolean and reversible logic circuits from organic electrochemical transistors
    Jake C. Perez
    Sean E. Shaheen
    MRS Bulletin, 2020, 45 : 649 - 654
  • [15] BOOLEAN CIRCUITS VERSUS ARITHMETIC CIRCUITS
    GATHEN, JV
    SEROUSSI, G
    INFORMATION AND COMPUTATION, 1991, 91 (01) : 142 - 154
  • [16] Design of reversible finite field arithmetic circuits with error detection
    Mathew, Jimson
    Rahaman, Hafizur
    Jose, Babita R.
    Pradhan, Dhiraj K.
    21ST INTERNATIONAL CONFERENCE ON VLSI DESIGN: HELD JOINTLY WITH THE 7TH INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS, PROCEEDINGS, 2008, : 453 - +
  • [17] THE HIERARCHY OF BOOLEAN CIRCUITS
    PUDLAK, P
    COMPUTERS AND ARTIFICIAL INTELLIGENCE, 1987, 6 (05): : 449 - 468
  • [18] Cyclic Boolean circuits
    Riedel, Marc D.
    Bruck, Jehoshua
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (13-14) : 1877 - 1900
  • [19] Boolean formulas and circuits
    不详
    COMPUTATIONAL COMPLEXITY OF EQUIVALENCE AND ISOMORPHISM PROBLEMS, 2000, 1852 : 23 - 63
  • [20] ON RESTRICTED BOOLEAN CIRCUITS
    TURAN, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 380 : 460 - 469