Temperature-dependent anisotropic bodies thermal conductivity tensor components identification method

被引:21
|
作者
Formalev, V. F. [1 ]
Kolesnik, S. A. [1 ]
机构
[1] Natl Res Univ, Moscow Aviat Inst, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Anisotropic bodies; Inverse coefficient problems; Regularizing functional; Thermal characteristic temperature dependences; Parametric identification method; Conjugate problems; CONJUGATE HEAT-TRANSFER; WALL GASDYNAMIC FLOWS;
D O I
10.1016/j.ijheatmasstransfer.2018.03.014
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper describes a new method of solving of inverse coefficient thermal conductivity problems in anisotropic bodies directed on the identification of temperature dependences of thermal conductivity tensor components. This method includes the following: quadratic residue construction between testing and theoretical temperature values, minimized gradient descent implicit method, parametric identification method, construction and numerical solution of conjugate problems relating to anisotropic thermal conduction, regularizing functional development based on prior assumptions on smoothness of temperature functions of thermal conduction components of anisotropic bodies, permitting to increase the whole method stability. Basing on this method many results were found relating to the identification of thermal conduction tensor components depending on temperature in the form of practically arbitrary functions: monotonous functions, having minimum and maximum points, flex points, etc. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:994 / 998
页数:5
相关论文
共 50 条
  • [41] Optimum design of space radiators with temperature-dependent thermal conductivity
    Arslanturk, Cihat
    [J]. APPLIED THERMAL ENGINEERING, 2006, 26 (11-12) : 1149 - 1157
  • [42] Temperature-dependent thermal conductivity of nanorod-based nanofluids
    Yang, B.
    Han, Z. H.
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (08)
  • [43] SOLUTION OF TRANSIENT CONDUCTION WITH TEMPERATURE-DEPENDENT THERMAL-CONDUCTIVITY
    MEHTA, RC
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1977, 99 (01): : 137 - 139
  • [44] TRANSIENT CONDUCTION IN A SLAB WITH TEMPERATURE-DEPENDENT THERMAL-CONDUCTIVITY
    SUCEC, J
    HEDGE, S
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1978, 100 (01): : 172 - 174
  • [45] Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers
    S. Uma
    A. D. McConnell
    M. Asheghi
    K. Kurabayashi
    K. E. Goodson
    [J]. International Journal of Thermophysics, 2001, 22 : 605 - 616
  • [46] A Temperature-Dependent Model for Thermal Conductivity Function of Unsaturated Soils
    Toan Duc Cao
    Thota, Sannith Kumar
    Vahedifard, Farshid
    Amirlatifi, Amin
    [J]. IFCEE 2021: FROM TRADITIONAL TO EMERGING GEOTECHNICS, 2021, (325): : 89 - 98
  • [47] Developing a temperature-dependent Kersten function for soil thermal conductivity
    Tarnawski, VR
    Leong, WH
    Bristow, KL
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2000, 24 (15) : 1335 - 1350
  • [48] Temperature-dependent thermal conductivity and viscosity of synthesized α-alumina nanofluids
    Janki Shah
    Mukesh Ranjan
    Vipul Davariya
    Sanjeev K. Gupta
    Yogesh Sonvane
    [J]. Applied Nanoscience, 2017, 7 : 803 - 813
  • [49] Steady-state determination of temperature-dependent thermal conductivity
    Chantasiriwan, S
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2002, 29 (06) : 811 - 819
  • [50] Temperature-dependent thermal conductivity and viscosity of synthesized α-alumina nanofluids
    Shah, Janki
    Ranjan, Mukesh
    Davariya, Vipul
    Gupta, Sanjeev K.
    Sonvane, Yogesh
    [J]. APPLIED NANOSCIENCE, 2017, 7 (08) : 803 - 813