Temperature-dependent anisotropic bodies thermal conductivity tensor components identification method

被引:21
|
作者
Formalev, V. F. [1 ]
Kolesnik, S. A. [1 ]
机构
[1] Natl Res Univ, Moscow Aviat Inst, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Anisotropic bodies; Inverse coefficient problems; Regularizing functional; Thermal characteristic temperature dependences; Parametric identification method; Conjugate problems; CONJUGATE HEAT-TRANSFER; WALL GASDYNAMIC FLOWS;
D O I
10.1016/j.ijheatmasstransfer.2018.03.014
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper describes a new method of solving of inverse coefficient thermal conductivity problems in anisotropic bodies directed on the identification of temperature dependences of thermal conductivity tensor components. This method includes the following: quadratic residue construction between testing and theoretical temperature values, minimized gradient descent implicit method, parametric identification method, construction and numerical solution of conjugate problems relating to anisotropic thermal conduction, regularizing functional development based on prior assumptions on smoothness of temperature functions of thermal conduction components of anisotropic bodies, permitting to increase the whole method stability. Basing on this method many results were found relating to the identification of thermal conduction tensor components depending on temperature in the form of practically arbitrary functions: monotonous functions, having minimum and maximum points, flex points, etc. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:994 / 998
页数:5
相关论文
共 50 条
  • [31] MEASUREMENT OF THE COMPONENTS OF THE CONDUCTIVITY TENSOR FOR ANISOTROPIC CRYSTALS
    KOVALYUK, ZD
    LUKYANYUK, VK
    MINTYANSKII, IV
    TOVARNITSKII, MV
    [J]. INDUSTRIAL LABORATORY, 1989, 55 (02): : 200 - 203
  • [32] A combined experimental and numerical method for extracting temperature-dependent thermal conductivity of gypsum boards
    Rahmanian, I.
    Wang, Y. C.
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2012, 26 (01) : 707 - 722
  • [33] A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity
    Arslanturk, C
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2005, 32 (06) : 831 - 841
  • [34] THERMAL STRESSES IN BODIES EXHIBITING TEMPERATURE-DEPENDENT ELASTIC PROPERTIES
    HILTON, HH
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1952, 19 (03): : 350 - 354
  • [35] Determination of Temperature Distribution for Annular Fins with Temperature-Dependent Thermal Conductivity
    Roozbehani, B.
    Montazeri, G.
    [J]. HEAT TRANSFER-ASIAN RESEARCH, 2011, 40 (05): : 464 - 474
  • [36] A 3 omega method to measure an arbitrary anisotropic thermal conductivity tensor
    Mishra, Vivek
    Hardin, Corey L.
    Garay, Javier E.
    Dames, Chris
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (05):
  • [37] Temperature-Dependent Thermal Conductivity and Absorption Coefficient Identification of Quartz Window up to 1100 K
    SHI Yu
    CHEN Xue
    SUN Chuang
    XIA Xin-Lin
    [J]. Journal of Thermal Science, 2023, 32 (01) : 44 - 58
  • [38] Temperature-Dependent Thermal Conductivity and Absorption Coefficient Identification of Quartz Window up to 1100 K
    Yu Shi
    Xue Chen
    Chuang Sun
    Xin-Lin Xia
    [J]. Journal of Thermal Science, 2023, 32 : 44 - 58
  • [39] Temperature-Dependent Thermal Conductivity and Absorption Coefficient Identification of Quartz Window up to 1100 K
    Shi, Yu
    Chen, Xue
    Sun, Chuang
    Xia, Xin-Lin
    [J]. JOURNAL OF THERMAL SCIENCE, 2023, 32 (01) : 44 - 58
  • [40] Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers
    Uma, S
    McConnell, AD
    Asheghi, M
    Kurabayashi, K
    Goodson, KE
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2001, 22 (02) : 605 - 616