Temperature-dependent anisotropic bodies thermal conductivity tensor components identification method

被引:21
|
作者
Formalev, V. F. [1 ]
Kolesnik, S. A. [1 ]
机构
[1] Natl Res Univ, Moscow Aviat Inst, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Anisotropic bodies; Inverse coefficient problems; Regularizing functional; Thermal characteristic temperature dependences; Parametric identification method; Conjugate problems; CONJUGATE HEAT-TRANSFER; WALL GASDYNAMIC FLOWS;
D O I
10.1016/j.ijheatmasstransfer.2018.03.014
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper describes a new method of solving of inverse coefficient thermal conductivity problems in anisotropic bodies directed on the identification of temperature dependences of thermal conductivity tensor components. This method includes the following: quadratic residue construction between testing and theoretical temperature values, minimized gradient descent implicit method, parametric identification method, construction and numerical solution of conjugate problems relating to anisotropic thermal conduction, regularizing functional development based on prior assumptions on smoothness of temperature functions of thermal conduction components of anisotropic bodies, permitting to increase the whole method stability. Basing on this method many results were found relating to the identification of thermal conduction tensor components depending on temperature in the form of practically arbitrary functions: monotonous functions, having minimum and maximum points, flex points, etc. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:994 / 998
页数:5
相关论文
共 50 条
  • [1] A method for the identification of nonlinear components of the thermal conductivity tensor for anisotropic materials
    Kolesnik S.A.
    [J]. Mathematical Models and Computer Simulations, 2014, 6 (5) : 480 - 489
  • [2] Anisotropic and temperature-dependent thermal conductivity of PbI2
    Croell, A.
    Tonn, J.
    Post, E.
    Boettner, H.
    Danilewsky, A. N.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2017, 466 : 16 - 21
  • [3] Identification of temperature-dependent thermal conductivity and experimental verification
    Pan, Weizhen
    Yi, Fajun
    Zhu, Yanwei
    Meng, Songhe
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (07)
  • [4] On-line identification of temperature-dependent thermal conductivity
    Vergnaud, A.
    Beaugrand, G.
    Gaye, O.
    Perez, L.
    Lucidarme, P.
    Autrique, L.
    [J]. 2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 2139 - 2144
  • [5] Inverse Identification of Temperature-Dependent Thermal Conductivity for Charring Ablators
    Wang, Xiang-Yang
    Liu, Na
    Zhao, Rui
    Nian, Yong-Le
    Cheng, Wen-Long
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2021, 42 (02)
  • [6] Inverse Identification of Temperature-Dependent Thermal Conductivity for Charring Ablators
    Xiang-Yang Wang
    Na Liu
    Rui Zhao
    Yong-Le Nian
    Wen-Long Cheng
    [J]. International Journal of Thermophysics, 2021, 42
  • [7] HEAT TRANSFER IN REACTOR COMPONENTS HAVING TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITY
    SPARROW, EM
    KOOPMAN, RN
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 1970, 42 (03) : 406 - &
  • [8] ANALYTICAL STUDY ON HEAT TRANSFER IN ANISOTROPIC SPACE WITH THERMAL CONDUCTIVITY TENSOR COMPONENTS DEPENDING ON TEMPERATURE
    Formalev, Vladimir F.
    Kolesnik, Sergey A.
    Kuznetsova, Ekaterina L.
    [J]. PERIODICO TCHE QUIMICA, 2018, 15 : 426 - +
  • [9] Measurement and identification of temperature-dependent thermal conductivity for thermal insulation materials under large temperature difference
    Zhang, Hu
    Shang, Chenyang
    Tang, Guihua
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2022, 171
  • [10] Temperature-dependent thermal conductivity of porous silicon
    Gesele, G
    Linsmeier, J
    Drach, V
    Fricke, J
    ArensFischer, R
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1997, 30 (21) : 2911 - 2916