Transcendental extensions;
descriptive set theory;
D O I:
10.57016/MV-ywug8949
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Our main result is a construction of four families C1, C2, B1, B2 which are equipollent with the power set of R and satisfy the following properties. (i) The members of the families are proper subfields K of R where R is algebraic over K. (ii) Each field in C-1 boolean OR C-2 contains a Cantor set. (iii) Each field in B-1 boolean OR B-2 is a Bernstein set. (iv) All fields in C-1 boolean OR B-1 are isomorphic. (v) If K, L are fields in C2. B2 then K is isomorphic to some subfield of L only in the trivial case K = L.
机构:
Academy of Mathematics and Systems Science, Chinese Academy of Sciences
School of Mathematical Sciences, University of Chinese Academy of SciencesAcademy of Mathematics and Systems Science, Chinese Academy of Sciences
Lu Cui
Minghui Ma
论文数: 0引用数: 0
h-index: 0
机构:
Academy of Mathematics and Systems Science, Chinese Academy of Sciences
School of Mathematical Sciences, University of Chinese Academy of SciencesAcademy of Mathematics and Systems Science, Chinese Academy of Sciences
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Arosio, Leandro
Fornaess, John Erik
论文数: 0引用数: 0
h-index: 0
机构:
NTNU, Dept Math, Trondheim, NorwayUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Fornaess, John Erik
Shcherbina, Nikolay
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wuppertal, Dept Math, D-42097 Wuppertal, GermanyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Shcherbina, Nikolay
Wold, Erlend F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oslo, Dept Math, Postboks 1053 Blindern, NO-0316 Oslo, NorwayUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy